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Time Series Modeling of Sample Survey Data
from the U.S. Current Population Survey
Richard B. Tiller' ’

Abstract: The signal extraction approach to
repeated sample surveys is potentially an
effective way to reduce high variances in
conventional sample estimators arising
from small sample sizes. A signal-plus-noise
model of labor force estimates from the U.S.
Current Population Survey is formulated
as a structural time series model with
explanatory variables where variance-
covariance information from the survey

1. Introduction

In the United States and elsewhere there
has been a long-standing demand for
government agencies to produce reliable
economic statistics below the national level.
Often times a large scale sample survey is
designed to produce reliable statistics for
major geographic areas but because of
budget constraints is spread too thinly
across the country to produce reliable area
specific data. In the small area estimation
literature various model-based approaches
have been suggested to improve the efficiency
of the dirgct survey estimator. Most of this
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sample is used to place restrictions on the
time series model. This model is fit to a
statewide series. Model-based estimates are
compared to the observed sample data and
the effect of controlling for sampling error is
explored.
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literature focuses on the situation where
data exist for a large number of areas but
only one or a few observations are available
per area. Gains in efficiency are sought
through the use of cross-sectional models to
pool data across areas.

Many of the more important surveys
conducted by government agencies are
repeated at frequent intervals to provide
decision makers with up-to-date information
on the dynamic behavior of the phenomena
being measured. The existence of these
time series of sample estimates raises the
possibility of achieving large reductions in
variance by pooling data over time for a
given area using signal extraction techniques
developed in the time series literature. Such
an approach originated in the work of Scott
and Smith (1974) and Scott, Smith, and
Jones (1977). The innovative feature of their
approach was to demonstrate that if the
underlying population values are treated as
stochastic rather than fixed an improved
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estimator can be obtained by combining a
time series model of the population with
designed-based sampling error information.

In recent years there has been renewed
interest in the time series approach to survey
sample data as a potentially cost effective
way of reducing variance in these estimates,
see, e.g., Bell and Hillmer (1987), Binder
and Dick (1989), Pfeffermann (1989), and
Tiller (1990). This paper applies this basic
approach to statewide labor force data from
the U.S. Current Population Survey (CPS).
The CPS is a nationwide monthly sample
of about 59,000 households designed to
produce estimates of employment and
unemployment and other characteristics of
the labor force status of the population.
While acceptable variance estimates of key
labor force variables are produced for the
nation as a whole, at the state level these
same variables have much higher variability.
A simplified version of the model to be
presented here was implemented by the U.S.
Bureau of Labor Statistics in 1989 in 39
states and the District of Columbia (Tiller
1989).

In Section 2, a signal-plus-noise model of
the CPS data is formulated. Section 3
discusses signal extraction and estimation of
unknown parameters; Section 4 describes an
application to unemployment rate data
from the CPS sample for the state of
Massachusetts; Section 5 discusses further
research; and Section 6 provides a summary
of results.

2. Signal-Plus-Noise Model

The observed CPS labor force estimate, y(¢),
is represented as the sum of two independent
processes, the true population or signal, 8(¢),
and the sampling error or noise, e(¢)

) = 0@) + e(2).

Given a model for 0(¢r) and design-based
information on the covariance structure of

@.1)
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e(?), the observed sample series may be
decomposed into its signal and noise com-
ponents. The basic approach of this paper is
to represent the signal by a structural time
series model with explanatory variables
(Harvey 1989) and to represent the noise as
an ARMA model (Bell and Hillmer 1990).
Nonsampling errors are not dealt with in this
application.

2.1.  The signal

The signal is modeled as a time series decom-
posed into the form

0 = M@ + T() + S + I¢)
(2.2)

where the terms on the right-hand side
denote the regressor, trend, seasonal, and
irregular components of the signal at time z.
The first three components are allowed to
drift slowly over time by subjecting them to
mutually independent white noise disturb-
ances. The variances of these disturbances
constitute the hyperparameters of the signal
and determine the stochastic properties of
the individual components. A positive
variance for a component implies that it is a
stochastic process, possibly nonstationary,
while a zero variance implies deterministic
behavior. The irregular is treated as station-
ary. These components are described in
more detail below.

2.1.1. Regressor component

This component represents that part of the
signal that can be explained by a set of
observable economic variables, largely
independent of the sampling error in the
observed series

M) = x(0)B(1) (23)

where x(¢) is a 1 x k vector of the known
explanatory variables and B(r) a k x 1
coefficient vector. The coefficients may be
treated as either fixed or stochastic. In the
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latter case P(¢) is modeled as a random
walk where vy(7) is a vector of mutually
independent random shifts

B = Bt — 1) + v(»

Elvy(1)vj(1)] = Diag (63, . .., 3).
2.4)

2.1.2. Trend component
This component is represented as a local
approximation to a linear trend

T(t) = Tt — 1) + Rt — 1) + v(2)
R(t) = R — 1) + vi(d). (2.5)

The trend level, 7(¢), is shifted by the white
noise variable, v;(¢), and its first difference
or growth rate is shifted by vy (#). The two
disturbances are mutually independent with
mean zero variances o,,_and o7, respectively.
A variety of common forms emerge as special
cases. If R(#) = 0, the trend follows a simple
random walk in levels. A fixed linear trend
results if both variances are zero.

2.1.3. Seasonal component

The seasonal component is the sum of six
trigonometric terms associated with the
12-month frequency and its five harmonics

6
S = Y S (2.6.a)
j=1
where each of the individual terms {;(7)} is
subject to a white noise shock, Vs (1), assumed
to have a common variance, o3

S;(f) = cos(w)S;(t — 1)
+ sin(w;)S*(r — 1) + v, (1)
(2.6.b)
S*(@) = —sin(w)S(r — 1)
+ cos(®)S*(t — 1) + v;;‘(t)
T
o = EJ (2.6.c)

Over a 12-month period the expected
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seasonal effects add to zero

11
E(z s,_,) o
=0

A positive value for o permits the seasonal
pattern to evolve over time while a zero
value results in a fixed seasonal pattern.

2.1.4. Irregular component

The irregular is a residual not explained by
the regression or time series components. It
is assumed to be stationary. Sometimes it is
appropriate to treat it as white noise,
although serial correlation may be allowed
for by modeling it as an ARMA process. In
practice, a low-order AR model is usually
sufficient when () is not white noise

(D) = vi(1)

EVi(D] = o (2.7)
where
oL) = 1 — oyL----a,Ll’is a

stationary operator.

While the general model of the signal, just
described, is very flexible, it need not involve
a large number of parameters to be estimated.
Some of the components may drop out in
practice. Often, the regressor variables will
be able to explain a substantial amount of
variation in the observed series with fixed
coefficients. If the regressors were fully
successful, the trend component would
reduce to a fixed intercept and the seasonal
component would drop out. In general, it is
unlikely that the regression component will
account for all of the systematic variation in
the signal since its behavior is likely to be
influenced by variables that are difficult to
measure conceptually or too costly to
collect. Stochastic time series components
can be very effective in controlling for
changes in the extent and influence of these
unmeasured explanatory variables. Even if
the regressors are only partially successful,
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the trend and seasonal components need not
take very complicated forms, although it is
important to assume that the time series
components are stochastic at the outset.

2.2. Noise

The noise component of the observed CPS
estimate represents error that arises from
sampling only a portion of the total popu-
lation. Its structure depends upon the CPS
design and population characteristics. For
our purposes, we focus on those design
features that are likely to have a major effect
on the variance-covariance structure of e(?).

One of the most important features of the
CPS is the large overlap in sample units
from month to month. The sample is divided
into eight independent panels or rotation
groups. Units are partially replaced each
month according to a 4-8-4 rotating panel.
When new households are introduced into
the sample, they are included for four
consecutive months, dropped out for eight
months, and then returned for four months.
Since this system provides large overlaps
between samples one month and one year
apart, we can expect e(f) to be strongly auto-
correlated. Also, there is likely to be some
correlation between nonidentical units in
the same rotation group because of the way
in which new samples are generated. When
a cluster of housing units permanently
drops out of a rotation group, it is replaced
by nearby units. Since the new units will
have chagacteristics similar to those being
replaced, this will result in correlations
between nonidentical households in the
same rotation group (Train, Cahoon, and
Makens 1978).

Finally, the dynamics of the sampling
error will also be affected by the composite
estimator. This is a weighted average of an
estimate based on the entire sample for the
current month only and an estimate which is
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a sum of the prior month composite and
change that occurred in the six rotation
groups common to both months (Bureau of
the Census 1978). In effect, this estimator
takes a weighted average of sample data
from the current and all previous months.

Another important feature of the CPS
is its changing variance over time. This
variance may be expressed in compact form
as

ol = DS (2.8)
where

D, = ratio of the variance of the CPS
estimator to the variance of the
simple random sample estimator
(design effect)

S; = N*(08()[1 — 6(D)/n()

n(t) = sample size

N(t) = total population size.

The variance, Sf, is derived from the for-
mula for a proportion.

Equation 2.8 illustrates three major
sources of heteroscedasticity: (1) sample
redesigns as reflected by changes in D,; (2)
changes in the sample size n(f); and (3)
changes in the true value of 0(¢). The first
two cause discrete shifts in the sample
variance. For example, the CPS is redesigned
each decade to make use of decennial census
data to update the sampling frame and
estimation procedures. Most recently, a
state-based design was phased in during
1984/85 along with improved procedures for
noninterviews, ratio adjustments, and
compositing. Changes in state sample
sizes have occurred more frequently than
redesigns and have had a major effect on
variances at the state level. Even with a fixed
design and sample size, the error variance
will be changing because it is a function of
the size of the true labor force. Since the
labor force is both highly cyclical and
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seasonal, we can expect the variance to
follow a similar pattern.

To capture the autocorrelated and heter-
oscedastic structure of e(f), we may express
it in multiplicative form (see Bell and Hillmer
1990) as

e(®) = y(@®e*©® (2.9.a)

with e*(¢) reflecting the autocovariance
structure, assumed to follow an ARMA
process and y(f) representing a changing
variance over time. More explicitly

e*(n) = ¢~ (L)B(L)v.(1)

v = %

e

(2.9.b)

where

O(L) = a stationary moving-average
operator of order g,

¢(L) = a stationary autoregressive oper-
ator of order p,

e o)
2 2
on = 0, Y &.
k=0

The weights {g,} are computed from the
generating function

gL) = ¢~ (D)B(L).

The autocovariance structure may also
change over time with redesigns of the
sample. However, since the most important
source of autocorrelation is the 4-8-4
rotation scheme, which has not changed, it
seems reasonable to treat this structure as
stable, at.least, between sample designs.

3. Signal Extraction and Estimation

This section briefly describes how signal
extraction and estimation of the unknown
parameters are performed. For more details,
consult Tiller (1990). For estimation and
signal extraction the component signal and
noise models are put into state-space form.
Given the parameters of the system, the
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Kalman filter (KF) is then used to optimally
decompose the current sample observation
into its signal and noise components. The
structure of the noise process is given by
survey design information and the unknown
hyperparameters of the signal process are
estimated by maximum likelihood.

A general state-space model is defined in
terms of two equations: a transition equation
(3.1) that describes the behavior of the
state vector, consisting of the unobserved
components of the signal and noise, as a
first-order vector autoregressive process and

an
observation equation (3.2) that relates
the observed data to the state vector.
Mathematically

Z = FZ_,+V,
HZ,

3.1

Yo = (3-2)

where Z is the state vector, F a fixed tran-
sition matrix, ¥ a vector containing the
white noise disturbances of the model, and
H a vector that converts the unobserved
components of the state vector to the
observed sample data.

The problem is to find the mean vector,
given the observed sample values, denoted
by

EZ\|Y] = Z, (3.3)
and the covarance matrix
coiz\y,) = p, (34

where E denotes the expectation operator,
and Y, is a vector of current and past values
of y,.

The solution, due to Kalman (1960),
takes the form of a set of updating equations
to calculate Z,, and P, recursively from
Z,,_,and P, _, by using the current observa-
tion y,. The resulting estimator has the mini-
mum-mean-square error property and is
optimal if ¥} is normal. The estimator of the
signal, obtained as a linear combination of
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the elements of the state vector that are
associated with the signal, has the following
recursive form

E(91|Yr) = E(etlyx—l)

+ hl[yl - E(y1| ),IAI))]‘
(3.5)

A corresponding expression exists for the
sampling error component

E(e|Y) = E(elY, ) + (1 — h)

x [y, — E(y|Y,_ )]
(3.6)

The first term on the right of the update
equation for 0 is the model prediction of the
signal, given sample data up to ¢t — 1, to
which is added a portion, 4,, of the error in
predicting the observed sample estimate at
time ¢. This has a simple interpretation as a
composite-type estimator that combines a
model estimate based on past data with
current sample information to obtain an
improved estimate.

The quantity 4,, which varies between
zero and one, determines how much weight
is placed on the current sample estimate. It
is a function of the ratio of the variance in
the signal to the sampling error variance. As
discussed by Bell and Hillmer (1990), this
illustrates an important characteristic of the
time series approach: it provides a design-
consistent estimator, in the sense that full
weight is given to the sample estimate as its
variance gags to zero. While this is a reassuring
property, the greatest potential gains from a
model-based approach come when the sam-
pling error variance is large. Nevertheless,
this consistency property has important
practical implications even for relatively
small sample sizes, as will be
illustrated below.

From an implementation point of view,
the structure of the KF is particularly
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convenient for the preparation of monthly
labor force estimates. Since it is a recursive
data processing algorithm, it does not
require all previous data to be kept in
storage and reprocessed every time a new
sample observation becomes available. All
that is required is an estimate of the state
vector and its covariance matrix for the
previous month. However, estimates prior
to the current period are not updated as new
sample data become available.

The suboptimality of previous period
estimates is easily remedied through a
process called smoothing. This process can
be described conceptually as combining a
KF running forward from initial time to
terminal time and a separate filter running
backward from terminal time to initial time
(Maybeck 1979). Smoothing, in contrast to
filtering, requires that the entire data series
be processed in batch. In the actual implemen-
tation, monthly estimates for the current
year are produced using the KF and revised
at the end of the year, along with previous
years, with a smoothing algorithm.

In practice, knowledge of the underlying
models comprising the signal and noise is
incomplete since neither are observable.
However, since y(¢) comes from a survey,
the covariance structure of e(z) is known, or
at least can be estimated independently of
the signal with conventional design-based
procedures. Holding the noise component
fixed, the signal may be estimated using
standard model fitting and diagnostic
techniques.

The parameters of the signal, the variances
of the white noise disturbances and the
coefficients of the irregular component are
estimated by maximum likelihood. The
innovation form of the likelihood is formed
(Harvey 1989) and maximized with respect
to the unknown parameters using a quasi-
Newton approach as implemented in the
IMSL subroutine, DUMINF (IMSL 1987).
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4. A State Unemployment Rate Example

This section describes an application of the
signal-plus-noise model to an unemployment
rate series collected from the Massachusetts
CPS sample. Specifically, we discuss the
methods used to estimate the sampling error
structure, the specification of the signal, the
results of fitting the complete model to the
state data, and an assessment of the impor-
tance of directly modeling the sampling
error.

4.1. Modeling the signal

In modeling the unemployment rate series at
the state level, the following three explanatory
variables were chosen for inclusion:

i. UI claims rate: The number of unem-
ployed workers claiming unemployment
insurance (UI) benefits as a percent of
total nonagricultural employment.

ii. EP ratio: Total nonagricultural pay-
roll employment as a percent of the
population.

iii. Entrant rate: The number of unem-
ployed entrants into the labor force as a
percent of the labor force for the nation as
a whole.

The first two variables are state specific
and are developed from non-CPS data
sources. The claims data are an adminis-
trative by-product of the federal-state UI
program. The nonagricultural employment
data come from the Current Employment
Statistics CES) program, a payroll survey
of employers. While the entrant rate is a
CPS statistic, it is taken from the entire
national sample. Therefore its sampling
error can be treated as largely independent
of a given state’s unemployment rate.

The rationale for including the above
variables is discussed by Tiller (1989). A
brief summary is provided here. The Ul
claims rate reflects those unemployed wor-
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kers who have passed their state’s require-
ments for benefit eligibility. For various rea-
sons, the claims data do not fully reflect the
cyclical behavior of job losers. To partially
control for this, the EP ratio is included as
a general measure of labor market tightness.
In addition, unemployment due to labor
force entry, which can account for as much
as 40% of the total unemployed, is not ac-
counted for at all in the UI statistics. The
national entrant rate is included to account
for the distinctive behavior of labor force
entrants. Figures 1-4 present graphs of the
unemployment rate and the three explanat-
ory variables. The first three figures refer to
data specific to Massachusetts and Figure 4
contains national data.

Since the choice of the explanatory vari-
ables is constrained by the availability and
the limitations of the data, there is no
guarantee that they will account for all the
variation in the signal. For example, the
payroll employment variable, while highly
correlated with the CPS household survey
estimates, is known to have some important
seasonal and cyclical differences. Moreover,
the national entrant rate may not fully
reflect the seasonal behavior of entrants in a
specific state. For these reasons, trend and
seasonal components were added to the
model.

4.2. Modeling the noise

The application of the signal-plus-noise
approach requires information on the
variance-covariance structure of the sampling
error. The most obvious approach is to
estimate this structure directly from the
sample unit data using the sample design
information. Scott, Smith, and Jones (1977),
hereafter SSJ, referred to this approach as a
primary analysis. It has the advantage of
providing efficient estimators that impose
few restrictions on the error covariances.
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In practice, a primary analysis is seldom
feasible in large scale surveys, where variance
estimation involves complex computations
on huge microdata files. In these circum-
stances, SSJ suggest a secondary analysis in
which the error structure is modeled directly
from the aggregate data. While this avoids
the cost of a primary analysis, it does
require more assumptions.

Limited research has been conducted
using either approach for CPS data. Haus-
man and Watson (1985) developed an
ARMA (1, 15) model of the error process
for the national teenage unemployment rate
series through a secondary analysis. Bell
and Hillmer (1987) using teenage data, but
for a different time period, developed an
ARMAC(1, 1) model as an approximation to
the design-based autocovariances estimated
by Train, Cahoon, and Makens (1978).

The approach followed in this study uses
data more aggregated than sample unit
data, but does so in a way that does not
require strong assumptions on the error
structure. The methods used to estimate
variances and autocorrelations are dis-
cussed below.

4.2.1. Variance estimates

Because of high costs of computation, the
Census Bureau directly estimates variances
once every ten years for selected characteristics
at the national level only. To assess the
reliability of national statistics on an ongoing
basis, the Census Bureau uses the method of
generalizgd variance functions (GVF). This
approach fits variance curves to groups of
statistics for which variances have been
estimated directly from the survey microdata.
This curve is then generalized over time and
to other statistics not used in the fit but with
similar design effects. The form of the GVF
is

. b
Vy_a+E 4.1
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where V}? is the relvariance of the estimate
y(¢) and a and b are empirically determined
parameters (Bureau of the Census 1978).
At the state level, the variance parameters
are not directly computed. Instead, these
parameters were developed indirectly from
the following assumed relationship between
the b parameter and certain sample quantities

N
k— D, after 1986
n
b = 4.2)
N .
— D, + k/, prior to 1987
n
b
a = — -
n
where
D, = design effect for the y statistic
N = total population size
n = sample size
k, k' = adjustments for between PSU

variance.

The above equations follow from represent-
ing the CPS variance as the product of a
simple random sample variance and a
design effect (Wolter 1985, ch. 5).

The GVF for the unemployment rate,
y(#), may be derived by making use of the
approximation for the relvariance of the
ratio of two statistics x and y (Hansen,
Hurwitz, and Madow 1953, p. 576),

Vi = V-1 43)

It follows that the estimate of the sampling
error variance for the unemployment rate is
given by

b
2 _ 2
o, () = ¥ [“ 0 = CLRO)/100
-4 - CLF(t)] @
where
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y(t) = CPS unemployment rate (in
percent)

a,b = GVF parameters for y
CLF(t) = CPS civilian labor force
and

a’, b = GVF parameters for CPS
employment.

While these variance estimates have been
developed indirectly, they do reflect impor-
tant known changes in the sample designs at
the state level. Moreover, recent research
supports their accuracy. Using the method
of generalized replication for 1987 state
data, Lent (1991) concluded that the method
described above yields good results for
unemployment.

4.2.2. Autocovariance estimates
In principle, autocovariances can be directly
computed using the same design-based
techniques as for variances. As with the case
for the variance estimation, this is a very
costly process and has only rarely been done
even at the national level. Much of what is
known empirically about the CPS covariance
structure is based upon a study by Train,
Cahoon, and Makens (1978). Using the
Keyfitz paired difference method, auto-
covariances were estimated for national
level statistics, both composited and uncom-
posited. This study, however, was limited to
13 months of data, December 1974 through
December 1975. Bell and Hillmer (1987)
used results from this study to model
national teenage unemployment. Although
these covariance estimates cover a different
geographical level, time period, and sample
design, it is nonetheless useful to compare
them to state estimates.

This study draws upon autocovariances,
specific to a state, developed from preliminary
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work that uses state-level time series data
for the eight rotation groups, previously
described in Section 2.2. Each of these
groups may be treated as independent sub-
samples. Variability across subsamples,
when averaged over time, provides the basis
for estimating the error covariances.

State data from January 1981 to July 1989
(103 observations) were used. To control for
rotation group bias, mean differentials by
time in sample were subtracted out. Eight
time series of errors were constructed from
deviations of each group’s adjusted estimate
about the overall mean. Assuming each of
the error series is stationary, autocovariances
were averaged across time and across
groups. These estimates were not adjusted
for compositing.

Table 1 presents the autocorrelation
estimates. The second column shows the
sample overlap that arises from the 4-8-4
rotation schedule. The next two columns
give the autocorrelations from the national
study (Train, Cahoon, and Makens 1978)
for the composited and uncomposited
unemployment statistics. Estimates from
the state study are presented in the fifth
column.

The state estimates show some strong
similarities with the national estimates. The
autocorrelations are strongest at the first
three lags and decline sharply from lags four
to eight, where there is no overlap of hous-
ing units. Even with no overlap, there is still
some dependency between nonidentical
units in the same rotation group since they
were selected from the same neighborhood.
The autocorrelations begin to rise at the
higher lags where the samples overlap again.
The state estimates show a peak at the 12-
month lag which corresponds to a local
peak in the sample overlap. The
national estimates do not show this peak,
but this may be due to the fact that the
12-month lag correlation was estimated
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Table 1. Sampling error autocorrelations
Lag % Overlap of National State
identical CPS CPS Model
housing units
Composited Uncomp. Uncomposited
1 75.0 0.50 0.45 0.39 0.39
2 50.0 0.33 0.28 0.30 0.30
3 25.0 0.23 0.17 0.22 0.22
4 0.0 0.17 0.08 0.07 0.07
5 0.0 0.12 0.07 0.09 0.09
6 0.0 0.07 0.05 0.08 0.08
7 0.0 0.07 0.05 0.07 0.07
8 0.0 0.09 0.08 0.05 0.05
9 12.5 0.09 0.10 0.07 0.07
10 25.0 0.12 0.14 0.09 0.09
11 37.5 0.09 0.09 0.08 0.08
12 50.0 0.07 0.11 0.13 0.13
13 37.5 - - 0.04 0.04
14 25.0 - - —0.01 0.01
15 12.5 — — —0.01 0.00
16 0.0 — - —0.01 0.00
17 0.0 — — —0.03 0.00

from only one observation. Finally, we note
that the negative autocorrelations from lag
14 and up are a reflection of low reliability
in these estimates.

Given the state autocorrelations, the next
step is to develop an ARMA approximation.
As Table 1 indicates, there are certain
features of the CPS design that suggest some
complexity in the ARMA representation.
The peak at the 12-month lag implies that a
model with high-order lags will be necessary
to piCkl:p the autocorrelation due to the
rotating panel. An ARMA (1, 12) model
was specified, resulting in estimated para-
meters which exactly reproduce the auto-
correlations up to lag 13. (See column six of
Table 1.) Alternatively, a more parsimo-
nious model might have been developed by
minimizing a sum of squares function which
could have been helpful if the correlations
failed to dampen out quickly after lag 12.

4.3. Estimation results

This section presents the results of applying
the signal-plus-noise model to monthly
statewide CPS unemployment rate data
covering the period from January 1976 to
December 1989 (168 observations). To
assess the importance of modeling the
noise component, an alternative model was
estimated that did not explicitly take it into
account.

Part A of Table 2 presents the specification
and parameter estimates for the basic
unemployment rate model with and without
accounting for the CPS error structure.
Identical regressor variables were used in
each case with fixed coefficients since the
variance of their white noise disturbances
were estimated to be very close to zero.
Accounting for sampling error does affect
the values of the coefficients but not by a
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Table 2.  Parameter estimates and test diagnostics

A. Parameter estimates

Ignoring sampling error

Regression coefficients (abs. t-values)

With sampling error

UI claims rate 0.592 (6.8) 0.610 (7.1)
EP —0.314 (6.1) —0.286 (6.2)
Entrant rate 1.207 (11.2) 0.987 (8.9)
Time series components
Trend level (o)) 0.20 0.013
Seasonal (o7,) 0.412 x 10°? 0.337 x 10°°
Irregular variance (o) 0.224 0
Irregular coefficient (o) 0.358 -
Likelihood —143 —111
B. Diagnostics

Test statistics
Ljung-Box [12] 8.51 9.07
Ljung-Box [24] 18.40 14.33
Heteroscedasticity w/time *3.55 1.17
Bera-Jarque normality *10.01 2.59

Skewness —0.14 0.32

Excess kurtosis 1.20 0.15
Post-sample prediction 0.27 0.45
Post-sample bias 0.04 0.08

*significant at the 5% level

substantial amount. Binder and Dick (1989)
reported similar results in a related study.

Both models have a trend level that
follows a simple random walk, a stochastic
growth rate not being necessary with the
presence of regression variables. Also,
both models have a stochastic seasonal
component of the same general form. When
sampling error is accounted for, the variance
of the irregllar component goes to zero and
it drops out of the model. When sampling
error is ignored, it is necessary to include a
first-order autoregressive term to account
for residual autocorrelation.

Part B of Table 2 presents the results of
diagnostic testing performed on the errors in
the one-step-ahead predictions of the actual
CPS estimates generated from the KF.
Conditional on the parameters, these

prediction errors should behave as normally
distributed white noise variables. For a
discussion of the individual tests, see Harvey
(1989). Examination of the test results gives
no reason to question the adequacy of the
model when the CPS error structure is
explicitly accounted for. If the CPS error is
ignored, one might expect the prediction
errors to be both autocorrelated and
heteroscedastic. In fact, Table 2 indicates
the presence of heteroscedasticity and non-
normality in the prediction errors. A time
series analyst unfamiliar with the CPS may
be tempted to transform the data in an
attempt to stabilize the variance. Frequently,
a power transformation is used but this is
not likely to be very helpful since both the
CPS variance and coefficient of variation
change over time, sometimes independently
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of the population variance. This point will
be discussed in further detail below. That
there is no evidence of autocorrelation when
sampling error is ignored is not surprising
since conventional time series modeling is
flexible enough to absorb the autocorrelated
portion of the error into the irregular
and possibly into the seasonal component as
well. Of course, confounding the source of
the autocorrelation could lead to inappro-
priate inferences about the behavior of the
time series.

Figure 5 compares the CPS to the
smoothed signal from the model that accounts
for sampling error. Plots of the regressor,
seasonal, and sampling error components
appear in Figures 6-8. The signal is consider-
ably smoother than the CPS. This is high-
lighted in Table 3 which shows the decom-
positiory of the variance of change in the
CPS over selected time spans. Elimination
of the sampling error from the CPS by signal
extraction removes about 46% of the
variation at the one-month span.

The smoothed estimates of sampling
error are plotted in Figure 8. This series
represents the difference between the CPS
and the smoothed signal taking into account
the changing variance and autocorrelation

structure of the sample design. Prior to 1985
large differences are occasionally evident. In
particular, for July 1982, the CPS estimate is
9.6% compared with 7.6% for the signal.
The recursive structure of the KF provides a
useful diagnostic for examining the plausi-
bility of such a large difference by generating
one-step ahead predictions of the actual
sample estimates each month conditional on
the model. Since these are true predictions,
made prior to incorporating information
from the current sample values into the
estimation process, they provide a way of
assessing how compatible the model is with
the observed sample estimates. For July
1982 the model-based prediction of the CPS
value was 9.0% with a standard deviation of
0.71. Thus, the large difference between the
sample and the signal is compatible with the
model.

There is another instance in which the
model did not predict the CPS well. This
occurred in September 1977 which shows up
as a large positive spike in the sampling
error in Figure 8. For this observation the
prediction error was 3.5 times its standard
error. However, the CPS observation has
the appearance of an additive outlier, being
unusually high at 9.1% and then falling to
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Fig. 6.  Regressor component of the signal
6.6% the next month and remaining at a
lower level thereafter. Accordingly, it is not
surprising the model was unable to predict
this observation and it seems reasonable to
assign a large portion of this prediction
error to the sampling error component.
Figure 9 plots the GVF standard errors
for the CPS (dashed line) and the standard
errors for the smoothed signal accounting
for sampling error (solid line) and ignoring
sampling error (dotted line). The CPS stan-
dard error shows a considerable amount of
variation, with a peak of about 0.7 percen-

tage points in the recession years of the early
1980s and dropping to around 0.4 percentage
points in recent years. While a declining
unemployment rate accounted for part of
this drop, the most important factor was a
62% expansion in the number of assigned
households for the state during 1984-85.
Looking at the behavior of the standard
error for the smoothed signal estimated
from the model accounting for CPS error,
we see that it has been considerably below
the CPS, averaging about 50% and has
shown much less variability. However, the
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Fig. 7.  Seasonal component of the signal
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size of the CPS standard error relative to the
signal has clearly declined primarily due to
the sample expansion.

The direct effect of sample expansion on
the model estimates may be illustrated by
the behavior of the weight given an individual
CPS observation in the KF update of the
signal estimate (see equation 3.5). Again,
focusing on the model that includes sampling
error, Figure 10 shows that these weights
(solid line) increased about 40% or so since
1984. Putting more weight on more precise
sample estimates is a reflection of the
design-consistency property of the estimator.

When a model ignoring sampling error is
used to estimate the regression, trend, and
seasonal components of the signal, major
inefficiencies occur. As can be seen from
Figure 9, the standard error of the smoothed
signal (dg)tted line) is almost constant except
at the end points. It lies below the signal

estimated from the model accounting for
sampling error prior to sample expansion
and above afterwards. Turning to Figure 10,
we see that estimating the signal from a
model ignoring sampling error (dotted line)
produces a very stable weighting pattern for
the individual CPS observations. The model
overweights the CPS in the early years and
underweights it in the later years.

While the signal extraction approach
appears to result in substantial gains over
the sample estimator, certain limitations
must be kept in mind. The model-based
variances do not account for uncertainty in
the estimated signal parameters. Also, the
sampling error structure is estimated out-
side of the time series model and is treated as
if it were known. Finally, the model of the
signal is only an approximation, and hence
subject to misspecification bias.

Table 3. Contribution of components to variance in observed CPS series

Span in months Sampling error Signal Regressors Trend Seasonal
Percent
1 46.3 53.7 41.3 0.3 12.2
3 29.9 70.1 66.5 0.7 2.8
12 29.0 71.0 64.5 6.4 0.1
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5. Further Research

Work continues on developing sampling
error variance and covariance estimation
derived directly from sample unit data (Lent
1991) to provide additional information on
the autocorrelation effects of the CPS sam-
ple overlaps. The development of GVFs for
variance estimation based directly on state
level sample designs is also a possibility that
will be explored.

Dempster and Hwang (1991) have devel-
oped a variance component model for estimat-
ing the sample autocorrelation structure

—— Signal with Sampling Error

from the CPS rotation groups. Alternative
ways of fitting ARMA models to these
correlations will be tested. Also, additional
work is planned to assess model-based esti-
mates of variance including accounting for
uncertainty in estimated parameters and
testing sensitivity to alternative model
specifications. Finally, the basic model
structure can be further expanded to explicitly
account for the effects of outliers and other
types of data irregularities as well as for
more general types of intervention effects.
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Fig. 10. Weight on CPS in signal update
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6. Conclusions

A signal-plus-noise model was formulated
and fit to a state CPS unemployment rate
series. The signal was represented by a struc-
tural time series model with explanatory
variables. The noise, or sampling error,
was modeled by an ARMA process with
changing variance. The estimator derived
from this model is design consistent. A
simplifed form of this basic model was
implemented in 1989 for 39 states and the
District of Columbia.

To assess the practical importance of
explicitly accounting for sampling error, a
model of the signal was fit to the CPS as
if it were the true series. Compared to
the complete signal-plus-noise model, this
reduced model is not design consistent and
this resulted in an inability to reflect major
changes in sample reliability. The time series
model, including the sampling error com-
ponent, achieved on average a 50% reduction
in variance over the survey estimator. How-
ever, the exact magnitude of this gain must
be treated with caution. Specifically, more
work is needed on developing state-specific
sampling error variances and autocorre-
lations, testing sensitivity to alternative
specifications of the signal, and quantifying
the uncertainty in the estimated model para-
meters.
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