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Transforming Hypotheses for Test of
Homogeneity with Survey Data

Jeffrey R. Wilson and Mark Reiser’

Abstract: Hypotheses tested using X 2
(Pearson statistic) and G? (likelihood
ratio) in SAS, BMDP, SPSSX and similar
statistical programs assume that the data
have been obtained from a simple random
sampling scheme. In the use of survey data
such an assumption is hardly ever met and
adjustments must be made to the test
statistic for the possible presence of extra-
variation. Instead of making test statistic

1. Introduction

In the analysis of survey data, which may
include clustered and stratified data, the
standard chi-squared X 2, and likelihood
ratio G? test statistics as obtained from
SAS, BMDP, SPSSX, or any modern statis-
tical package greatly inflate the type I error
rate when a strong, positive intra-cluster
correlation is present. Thus, a researcher
who is unaware of the effect of the design
on the variance of estimates can easily
produce meaningless results with X 2 and
G?%. Recent works (Rao and Scott 1979,
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adjustments, this paper considers transfor-
mation of the original hypotheses and the
construction of test statistics with familiar
forms to investigate the transformed
hypothesis. Thus the hypothesis is trans-
formed when survey data are used and the
form of the basic statistic is maintained.
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1981; Brier 1980; Fay 1985; Wilson 1986;
Koehler and Wilson 1986; Roberts, Rao
and Kumar 1987; Anderson 1988; Wilson
1989; and Wilson and Koehler 1991), to
name a few, have made adjustments to
the X2 and G? for testing hypotheses.
Although some programs such as GLIM
(Baker and Nelder 1978), CPLX (Fay
1988) and PCCARP (Fuller, Kennedy,
Schnell, Sullivan, and Park 1987) have
been adopted to deal with the adjusted
statistics, the approach is still becoming
popular. Unfamiliarity with these pro-
grams and for some the complexity
involved in their use may force some
researchers to use the unadjusted test statis-
tics found in SAS, BMDP, and SPSSX.
When the variances of sample propor-
tions exceed those implied by Poisson, bino-
mial or multinomial distributions the
sample proportions are often referred to as
overdispersed. Some authors suggest that
such a phenomenon may be caused by
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clumped sampling. Certainly it is the case
that such extravariation may be caused by
the use of complex sampling schemes to
obtain sample data. Thus use of the Pear-
son chi-square test or likelihood ratio test
for comparing vectors of proportions with
such data should be avoided since such
tests ignore any extravariation due to the
complex sampling scheme. Any test that
ignores overdispersion may cause a great
inflation of the type I error rate.

Survey researchers in business and the
social sciences are increasingly using com-
plex sampling procedures in order to gain
greater accuracy, to obtain more informa-
tion, or to reduce the costs of estimating
population  characteristics. Examples
include market research studies, and large
nationwide surveys about labor force parti-
cipation, health care, energy usage, and
economic activity. Survey samples are now
used in every field of scientific study includ-
ing demography, transportation, health
care, economics and so on. Indeed it is not
an exaggeration to say that most of the
data undergoing any form of statistical
analysis are collected in surveys (Wolter
1985).

In order to make statistically valid con-
clusions from the results of complex sur-
veys in the testing of hypotheses, it is
necessary to use methods that have been
developed during the last decade. Many
survey researchers may not be familiar
with these methods. The generally used
statistical packages (SAS, SPSSX, and
BMDP) do not include these methods,
although some work has been done in
SAS. The effects of using the present
packages for complex surveys are well docu-
mented (Brier 1980; Rao and Scott 1979,
1981; Bedrick 1983; Wilson and Turner
1988; and Wilson 1989).

Different methods have been directed to
finding appropriate test statistics for testing
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hypotheses when the data are obtained from
complex sampling schemes. These methods
can be summarized as (i) those making use
of quadratic forms to construct Wald statis-
tics (Wald 1943; Moore 1977; Forthofer and
Koch 1973; Forthofer and Lehnen 1981;
Grizzle, Starmer, and Koch 1969), (ii)
those making use of probability models to
describe the extravariation in the true vec-
tors of proportions (Brier 1980; Wilson
1986; Koehler and Wilson 1986), (iii) those
making use of partial information about
the covariance matrix of the observed vec-
tors of frequencies (Bedrick 1983; Rao and
Scott 1979, 1981; Wilson 1989) and, @iv)
the jackknifing of the usual Pearson X? sta-
tistic (Fay 1985). The performance of these
methods was examined by Wilson and
Turner (1988). In each of these methods
the aim is to make adjustments or changes
to the test statistic so as to better test the
null hypothesis.

This paper examines the use of test statis-
tics for comparing transformed vectors of
proportions. These vectors are transformed
based on an estimated function of the design
effects matrix. Then the common procedure
of comparing vectors by forming quadratic
forms using the inverse of the covariance
matrix is pursued. The work will assist sur-
vey researchers in better understanding how
their survey results can defensibly be inter-
preted. Section 2 introduces the test of
homogeneity and reviews the general con-
struction of quadratic forms for checking
the fit of categorical linear models. Trans-
formation of hypotheses is considered in
Section 3. A numerical example analyzed
by Wilson (1989) is revisited in Section 4.

2. Test of Homogeneity

2.1.  Simple random sampling

Consider comparing vectors of proportions
from m subpopulations. This procedure was
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considered by Koehler and Wilson (1986)
but reviewed here for ease of reference and
to serve as a natural building block. The
members of each subpopulation are classi-
fied into the same set of I mutually
exclusive and exhaustive categories. For
the jth subpopulation, the vector of true
proportions for members in the various
categories is denoted by the vector
m; = (my,my, ..., 7). Estimates of the
true vectors of proportions are obtained
from independent two-stage cluster sam-
ples from each population. A sample of K;
clusters is randomly selected with replace-
ment and with probability proportional to
size (pps) from the jth subpopulation.
Furthermore, a random sample of ny sec-
ondary units is selected with replacement
from the kth cluster selected from the jth
subpopulation and each sampled unit is
classified into one of the I mutually exclu-
sive categories. Conditionally on the cluster
selected, the vector of observed frequencies
for the kth cluster selected from the jth sub-
population, X = (X, Xaj, - - -, Xp)'» has
a multinomial distribution with parameters
ny and pi = (Pij, Pojer - - > Pi) » the true
vector of proportions for the particular
cluster selected.

A two-dimensional table of frequency
totals can be constructed in which the
rows correspond to the I categories and
the columns correspond to the m subpopu-
lations. The jth column of this table con-
sists of the vector X; = ZkK’;IXjk of total
frequencies for the jth subpopulation. For
the sampling scheme considered here, an
unbiased estimator for r; is

~ -1

where 7; is the total number of observations
in the jth subpopulation.
Consider testing the null hypothesis

Hy:mi=m, j=12,...,m; (1)
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for some unknown vector of proportions
m,y, against the general alternative. When
the null hypothesis is true an unbiased esti-
mator of m is

m
7Al'0 = E ajfrj
j=1

where the weights o; are known constants
such that 1=37",0; and «; >0, for
j=1,2,...,m. It can be shown (Wilson
and Koehler 1984) that the covariance
matrix for #@; — 7, has diagonal ele-
ments

=1
where
K
Sj = Ver(j) + nj—2 <Z njzk - nj)
k=1
X Z le(le - Wj)(le - Wj)'- 3)
]

Vi(j) is the covariance matrix for the jth
subpopulation under multinomial sampl-
ing and Y denotes the sum across all

clusters inl the jth subpopulation with
weights w; equal to the proportion of the
population in the /th cluster. The off-diago-
nal elements in the covariance matrix for
7t — g is
m
Vi=-aS— S+ oS, (4)
=1
The matrix V with diagonal blocks given by
(2) and off-diagonal blocks given by (4) is
the covariance matrix for the vector of
random deviations

3 N Al Al Al Al Al N/
d = (&) — %0, &y — g, - .., o — T0) -

A consistent and nearly unbiased estimator
of V is obtained by replacing S; in (2)
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and (4) with
Sj = l‘jnj—l(Kj - 1)_1
K

N
X "ij(f)jk - ﬁ'j)(f)jk - ﬁ'j)l
i=1

+ (1 - tj)vsrs(j)

where

Vas) =1 [diag(#)) — 7;#]]

t= (K-

We see that diag(7t;) is a diagonal matrix
with elements #;, and py = nﬁcIXjk is the
vector of observed proportions for the kth
cluster sampled from the jth subpopula-
tion. The estimate of the covariance matrix
for d is denoted by V.

Clearly, V and V are singular matrices.
Nonsingular covariance matrices can be
obtained by deleting some elements from
d, but it is notationally more convenient to
retain redundant differences in d and use a
generalized inverse of V in the definition of
test statistics. Consequently, a Wald statis-
tic for testing the equality of the vectors of
subpopulation proportions is

X} = V-
where V™ is the generalized inverse of V. Fol-
lowing Moore (1977), this statistic has a lim-
iting central chi-square distribution with
degrees of freedom equal to the rank of V
when the null hypothesis is correct. The sta-
tistic, X’ %V, reduces to the Pearson statistic

when V is the usual estimate of the covar-
iance matrix of d for simple random sam-
pling.

The accuracy of the large sample chi-
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square approximation for the null distri-
bution of X3, is greatly influenced by the
accuracy of V as an estimator of V. A sub-
stantial number of sampled clusters is
required to accurately estimate large covar-
iance matrices. When a large number of
clusters cannot be sampled from each popu-
lation, it may be advantageous to describe
variation among clusters within popula-
tions with a more parsimonious model.
Kohler and Wilson (1986) used the Dirich-
let-multinomial model with one parameter
to account for among cluster variation
within each population.

2.2 Extravariation model

Assume that the sample vector of observed
proportions #; is distributed with mean
vector m; (vector of subpopulation propor-
tions) and covariance B;, where B; is a
function of ;. Let n denote the overall
sample size and »; for j=1,...,m; denote
the sample size for the jth subpopulation
such that n =} n;.

The multinomial model implies that the
covariance matrix for the vector of
proportions for randomly chosen units
within the jth subpopulation is V) =
n;! (diag m; — m;m}). Wilson (1989) referred
to this as the simple model. Wilson defines
the multinomial extravariation model var-
iance for 7; as

_gl2 1/2
B; = H;"" Vss()H;
where H}/z = diag h}/z and h; =
(hyj, hyj, . .., hy)" is a vector of unknown
extravariation parameters of dimension /.
This model suggests that the covariance

matrix may be written as
B; = Vas() + 4
where A; is the added variation beyond the

multinomial assumption. Also assume that
a central limit theorem for the specified
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design is available which ensures that

n 2(11'] — ) converges in distribution to a
normally distributed random variable with
a zero vector and covariance matrix B;.

To derive a test for the null hypothesis
Hy:m=m, j=1,2,...,m; where m is
unknown, and estimated by the average
vector of proportions @ =3~ aj;ﬁ-j,
the vector of  differences d=
(%) — Ry -+, m — 7) is used. For the
extravariation model the covariance matrix
 for d is composed of diagonal elements

m
=1
and off-diagonal elements

m
oB; + Za%Bt.

t=1

Q;=—aB; —

A consistent estimator of the covariance
matrix can be obtained by substituting #;
for 7; in B; and using a consistent estimator
for Hl/ 2 Denotlng the estimator for the
covarlance matrix by ) and noting that
the elements of d sum to zero, a large sam-
ple chi-square test statistic for testing the
equality of the vectors of population pro-
portions is given by the quadratic form

X3 =d0"d
where the degrees of freedom are equal to
the rank of Q (the estimated covariance of
d). When the weights used for # are chosen
inversely proportional to the size of the ele-

ments of the covariance matrices for the ﬁ'}s
under Hy, i.e.,

-1
_njzhll] (Zntzhul ) (5)

t=1

where h;; is the iith element of Hj, then X' é

reduces to

m 1 5
= an (hyyty)™ 7r,j 7). (6)

i=1
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The test statistic X% is equivalent to X 12,
when h;; =1 for all j, j—l 2,...,1. So
when the test statistic, X is used to test
Hy : 7; = my and hy; # 1 for at least one of
the categories then it is not the most
suitable test provided in those programs.
In such cases, the covariance matrix under
the design is not the simple random sam-
pling matrix V.

3. Test Statistics for Transformed
Hypotheses

3.1 Transformed hypotheses

Consider a linear combination of 7r; such
that the transformed vector

q; = Qm;

where Q; is a square matrix of con-
stants. Then the hypothesis of interest
Hy:q;=qo for j=1,2,...,m; can be
tested using techniques similar to the ones
adopted in Section 2. Let §; be an unbiased
estimator for q; and let go be a linear combi-
nation of §;, j=1,2,...,m. Then a Wald
test statistic

m
Xp= Z(ﬁj — o)’
=1

x [Var(§; — o)l (& — o)

_ Aalxr—1a
= chQ C
R PO N m N
where &, = §; —§o where qo = Y= 174
and Vj is the variance-covariance matrix

of §; — §o with diagonal and off-diagonal
elements given respectively as

m
2
Vo =E - 2vE+Y 1E
t=1
and

m
E—yE+Y 1E

t=1

Vig =~

where E; = Var(Q;#;), Var denotes vari-
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ance, and 0 < 7; < 1 such that 1 = 3°7_, ;.
Under the extravariation model, the covari-
ance matrix for the linear combination Q;#;
is given as

Var(g;) = Var(Q;#;) = QB,Q;

= nj_leH}/zBsrs(O)H}/szl' (7)

where Q; represents a matrix of constants
for the jth subpopulation, and nj_lBS,s(o) is
the covariance matrix under H, for simple
random sampling such that

By;(0) = diag(mo) — momp.
When Q; = 1/ 2 , then V;;, takes on the
value

srs( 27] sts(j +Z7t sts(f)

t=1

and Vo takes the value

m
—YiVsrst) — % Vsrs(i) + Z 7t2 Virs(s)-
=1
Furthermore, examining V, for the case
of m =3 subpopulations which can be
easily generalized to m > 3, (under Hy) the
diagonal elements are

((1‘271 +Znt '71‘) sts(0

and off-diagonal elements are

m
- - 1.2
<’"('71n1 ! + Yan; 1) + Z ny 1’Yt)Bsrs(O)
=1
When the v, s are chosen proportional to the
sample size the matrix V, reduces to

1\A/IHO = (Inv(diag ll) - n—13)®Bsrs(O)

where Inv denotes inverse, n = (n,n,), 3 is
a square matrix with elements equal to
one and ® represents the direct product
between matrices. Then a test statistic for
H, : q; = q¢ where q is unknown is given by

X2 =& Mppe,
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and My, is a consistent estimator of M HO-
One consistent estimator can be obtained by
replacing mw, with @, in Mgy. Then for
By0) = diag(tg) — #op

Mzo = (diagn -+ n3'nn') @By

-1 -1

n3 nanBsrs(O)

[, +n3'n Bs—r;(

1. 21H—
[n1 +n3 lnl]Bsrsl(O)
ny n1n2B

K= Yot

For m > 3 the generalization is obvious.

srs(0)

srs(O) (@ - —qo)-

Additionally, the test statistic for
H : q; = q reduces to
m I
§= 2y = (®)
Jj= i=1
where  §;=(4y,-..,q;), and §o=
(410, ---,4n)" are unbiased estimates of g;

and qq, respectively. Note that the form of
X is similar in structure to X, 2 the Pearson
statlstlc and to X3 in (6). The mean and
variance for X2 2 were obtained empirically
based on a simulation of data for a strati-
fied two-stage cluster sampling scheme.
The simulation was conducted based on
procedures used by Wilson and Turner
(1988). The test statistic X 2 performed satis-
factorily when compared to a chi-square
random variable with the associated
degrees of freedom.

Consider n}/ z(ﬁj —®) as an asymp-
totically (I — 1) multivariate normal ran-
dom vector with mean 0 and covariance
matrix D(; say. Suitable central limit
theorems (Fuller 1975; Krewski and Rao
1978) ensure that nl/z(ﬁ'}—ﬂ') is asymp-
totically normal So for fixed Qy, the linear
combination n Qj(1r] — ) is also asymp-
totically normally distributed. The asymp-
totic distribution of X 5 follows (Moore
1977).

Testing Hj : q; = qo using X' 3 is asympto-
tically equivalent to testing Hy:m =
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with X3. Thus a researcher can examine the
transformed hypothesis and use X 3 to
obtain information of the homogeneity of
m,j=12,...,m.

3.2 Estimating generalized design matrix

Computing X, 3 requires an estimate of Q;,
j=1,2,...,m; or equivalently the matrix
H,. An estimate of H; can be obtained
from the product of £; and Vs_ré( j» 1., the
design matrix and the inverse of matrix
under simple random sampling. A priori
knowledge of the design effects may be
available and can be used in estimating the
generalized design matrix.

The covariance matrix §; depends on =;
and on the unknown vector of parameters
h. Consider for the jth subpopulation so
with what follows we ignore the index j.
The diagonal elements of 2 are o; =
hy(m; — 7?) fori=1,2,...,I; and off-diago-
nal elements are a,-,=—h}/2h}/27r,-7r, for
i#t=1,2,...,1. Thus, if a consistent
estimator = (6;) is available, then
a consistent estimator for A; is ﬁi =
néy/ (1 = 7).

4. Numerical Example

Wilson (1989) using a vector of design
effects analyzed data from a study of hous-
ing satisfaction performed for the U.S.
Department of Agriculture (Brier 1980).
Households in the vicinity of Monte-video,
Minnesota were stratified into two popula-
tions: those in the metropolitan area and
those outside of the metropolitan area. A
random sample of 20 neighborhoods was
taken from each population, and five house-
holds were randomly selected from each of
the sampled neighborhoods. One response
was obtained from the residents of each
household concerning their satisfaction
with their home. The possible responses
were ‘‘unsatisfied” (US), “satisfied” (S),
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and “very satisfied” (VS). Only data from
neighborhoods in which responses were
obtained from each of the five sampled
households are used here to illustrate the
evaluation of the test statistics. This
reduces the original data set to K; =18
households from the nonmetropolitan area
and K, = 17 households from the metro-
politan area. These data were also ana-
lyzed by Koehler and Wilson (1986).
They wused the statistic X AMB =
S ng! S A7 (7 — #:)* where & is
an estimate of the overdispersion. The
estimated vector of proportions for the non-
metropolitan area is 7, = (.522,.422,.056)',
and the corresponding estimated vector of
proportions for the metropolitan area is
#, = (.353,.506,.141)".

There is interest in comparing the vectors
of probabilities for the two subpopulations.
In fact there is some indication that resi-
dents of the metropolitan area are less satis-
fied with their homes. The value of the usual
Pearson chi-square (Koehler and Wilson
1986) is Xj = 6.81 on two degrees of free-
dom. Wilson (1989) reports that the test
statistic is substantially reduced when the
effects of the design are accounted for.
The statistic X’ %2 has a value of 4.43. Con-
sider testing the transformed hypothesis
H, : Q,m = Q,m,. From the design effects
obtained from previous investigations for
these data, an estimate of Qj=Hj_l/ 2 s
the diagonal matrix

H;'/% = diag[(2.088)71/2, (1.990)7'/2,
(1.134)717)

and H; 2 s estimated by the diagonal
matrix

;% = diag[(2.357)71/%,(1.812)7'2,
(0.982)7172,

It follows that if one was interested in test-
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Table 1. Comparison of test statistics for hypotheses in survey data

Test statistic Covariance matrix Hypothesis Comments

X, 1,2 (Pearson) Multinomial model Hy:m=m, No adjustment

X3 (Wilson 1989) Multinomial extravariation Hy:m=m, Adjustment to
model covariance

X, q2 (Section 3) Same form as multinomial Hy:q;=qp Adjustment to
model hypothesis

Xmp (Koehler and Heterogeneity factor times Hy:m=m, Adjustment to

Wilson 1986) multinomial model covariances

ing the hypothesis H, : w; = w, (with the
available design effect matrix) then one
may test the transformed hypothesis

0.6971'11 0.657721
Ho . 0.717'('12 = 0.747'&'22
0.947T13 1.017’(’23

using the test statistic X qz . The statistic has a
value of 5.75 on 2 degrees of freedom. Thus
there is no significant difference in the trans-
formed vectors. The testing of this trans-
formed hypothesis uses a test that does not
inflate the type I error. The form is very
familiar and the computations are quite
simple.

5. Discussion

The research presented thus far regarding
extravariation and overdispersion for data
obtained from complex sampling designs
suggests that some adjustments must be
made to the covariance matrix to account
for the extravariation. It is generally agreed
that the usual Pearson statistic X, 3 is not
adequate for testing hypotheses based on
survey data. It suffers from inflation of
type I error level.

The present research suggests obtaining a
transformed hypothesis through the use of a
function of the cell design effects and then
using a form of Wald statistic. Table 1 gives
a summary of some test statistics used with
extravariation. The test statistic, X’ é, makes
adjustments to the covariance matrix. The

X; developed in Section 3 makes adjust-
ments to the hypothesis. This paper suggests
that the X, 3 for testing the adjusted hypoth-
esis does not suffer from the effects asso-
ciated with the use of certain test statistics
on overdispersed data.
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