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Among the goals of statistical matching, a very important one is the estimation of the joint
distribution of variables not jointly observed in a sample survey but separately available from
independent sample surveys. The absence of joint information on the variables of interest
leads to uncertainty about the data generating model. The present article reviews the concept
of uncertainty in statistical matching and how to measure it by providing a unified framework
for the parametric and nonparametric setting. Furthermore, the reduction of uncertainty due to
the introduction of logical constraints is investigated and a simulation experiment is
performed.
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1. Introduction

A key issue in decision processes is the availability of information. Rich and detailed

information will help a decision maker in making good decisions. Information may be

gathered through a survey but the cost of implementing a new survey and the availability

of information in archives or in other surveys may lead researchers to combine available

information from different data sources. Statistical matching (sometimes called data

fusion) aims at combining information available in distinct sample surveys referred to the

same target population. Formally, let Y and Z be two random variables (rv). Statistical

matching is defined as the estimation of the ðY ; ZÞ joint distribution (e.g., its cumulative

distribution function – cdf – Fð y; zÞ) or of some of its parameters when:

. Y and Z are not jointly observed in a survey, but

. Y is observed in a sample A, of size nA,

. Z is observed in a sample B, of size nB,

. A and B are independent, and the sets of observed units in the two samples do not

overlap (it is not possible to use record linkage),

. A and B both observe a set of additional variables X.

A detailed list of statistical matching applications is to be found in D’Orazio et al. (2006b)

and Ridder and Moffitt (2007).

Generally speaking, two approaches have been considered. At first, e.g., Okner (1972),

techniques based on the conditional independence assumption between Y and Z given X

(CIA assumption) were considered. Appropriateness of CIA is discussed in several papers.
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We cite, among others, Sims (1972) and Rodgers (1984). The second group of techniques

uses external auxiliary information on the statistical relationships between Y and Z (e.g., an

additional file Cwhere ðX; Y ; ZÞ are jointly observed is available, as in Singh et al. (1993)).

Most of these approaches aim at making an inference as to the distribution of Y and Z by

reconstructing, through imputation procedures, a synthetic file containing X, Y, Z data.

These approaches are actually theoretically justified when the joint probability

distribution of the variables of interest in the population coincides with the probability

distribution of the same variables in the synthetic data file, or at least when these

two distributions are “very close”. The discrepancy between the joint distribution of the

variables of interest (a) in the population, and (b) in the synthetic data file, is usually

referred to as matching noise (cf. Paass 1986). Attempts at evaluating the “closeness” of

the empirical distribution of imputed data to the empirical distribution of “real” data have

been performed in the literature, see D’Orazio et al. (2006b). In a nonparametric setting an

important role is played by hot deck methods, as well as k-Nearest Neighbour (kNN, for

short) methods. Their properties are studied in Marella et al. (2008) and in Conti et al.

(2009a), where both theoretical and simulation results are obtained.

As a matter of fact, the CIA is usually a misspecified assumption, while external

auxiliary information is hardly ever available. The lack of joint information on the

variables of interest is the cause of uncertainty about the model of ðX;Y ; ZÞ, since the

sample information provided by A and B is actually unable to discriminate among a set of

plausible models for ðX; Y; ZÞ. In other terms, the adopted statistical model is not

identifiable on the basis of sample data. Hence, a third group of techniques that does not

directly aim at reconstructing a complete data set is introduced. This group of techniques

addresses the so-called identification problem. The main consequence of the lack of

identifiability is that some parameters of the model cannot be estimated on the basis of the

available sample information. For instance, in a parametric setting, instead of point

estimates, one can only reasonably construct sets of “possible estimates”, compatible with

what can be actually estimated. These sets (usually intervals) formally provide a

representation of uncertainty about the model parameters.

In this setting, the main task consists in constructing a coherent measure that can

reasonably quantify the uncertainty about the (estimated) model. From an operational

point of view, a measure of uncertainty essentially quantifies how “large” is the class of

models estimable on the basis of the available sample information. The smaller the

measure of uncertainty, the smaller the class of estimated models.

This article aims at reviewing uncertainty in statistical matching providing a unified

framework for the parametric and nonparametric approach. More specifically, in Section 2

model uncertainty is defined and uncertaintymeasures are introduced. Furthermore, several

examples are illustrated for both parametric and nonparametric settings. Section 3 shows the

effect onmodel uncertainty due to the introduction of logical constraints (frequently used in

imputation and editing). Finally, in Section 4 a simulation experiment is performed.

2. What is Uncertainty in Statistical Matching

Let ðX; Y; ZÞ be a trivariate random variable with joint (cumulative) distribution function

(df)Mðx; y; zÞ. Denote further by Hð y; zjxÞ the joint df of ðY ; ZÞ conditionally on X, Fð yjxÞ
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and GðzjxÞ the marginal d.f.s of Y and Z conditionally on X, respectively, and QðxÞ the

marginal df of X.

LetM ¼ {Mðx; y; zÞ},H
x
¼ {Hð y; zjxÞ},F x ¼ {Fð yjxÞ},G

x
¼ {GðzjxÞ},Q ¼ {QðxÞ}

be the sets of df’s in which M, H, F, G and Q lie. Knowledge of a specific distribution

inM is equivalent to knowledge of the corresponding distributions in H
x
and Q .

We further assume that the observation mechanism allows one to identify the classes

F x, G
x
and Q , but not the class H

x
, unless special assumptions are made. The most

important is the conditional independence assumption, under which we have

H
x
¼ {Fð yjxÞGðzjxÞ;F [ F x;G [ G

x
}, i.e., H

x
¼ F x £ G

x
.

We distinguish two main cases:

1. Parametric case: the classesH
x
andQ are indexed by real or vector parameters. As a

consequence we may write:

Q ¼ {QjðxÞ; j [ J}

F x ¼ {Ffð yjxÞ;f [ Fx}

G
x
¼ {GcðzjxÞ;c [ Cx}

H
x
¼ {Hgð y; zjxÞ; g [ Gx}

2. Nonparametric case: the above classesH
x
andQ cannot be indexed by real or vector

parameters.

Given the (known) marginal distributions Fð yjxÞ and GðzjxÞ, uncertainty is defined as the

set of probability distributions of the random vector ðY; ZjXÞ compatible with Fð yjxÞ and

GðzjxÞ. Formally

H2ð y; zjxÞ # Hð y; zjxÞ # Hþð y; zjxÞ ð1Þ

where

Hþð y; zjxÞ ¼ sup H[H
x{Hð y; zjxÞ : Hð y;þ1jxÞ ¼ Fð yjxÞ;Hðþ1; zjxÞ ¼ GðzjxÞ};

H2ð y; zjxÞ ¼ inf H[H
x{Hð y; zjxÞ : Hð y;þ1jxÞ ¼ Fð yjxÞ;Hðþ1; zjxÞ ¼ GðzjxÞ}:

In the parametric case, we may write

Hþð y; zjxÞ ¼ Hþð y; zjx;c;fÞ

¼
g[Gx
sup{Hð y; zjx; gÞ;Hð y;þ1jx;gÞ ¼ Fð yjx;fÞ;Hðþ1; zjx; gÞ ¼ Gðzjx;cÞ}

H2ð y; zjxÞ ¼ H2ð y; zjx;c;fÞ

¼
g[Gx
inf{Hð y; zjx; gÞ;Hð y;þ1jx; gÞ ¼ Fð yjx;fÞ;Hðþ1; zjx; gÞ ¼ Gðzjx;cÞ}

The df’s belonging to the class H
x
are compatible with the available information,

namely they may have generated the observed data.

The interval (1) summarizes the pointwise uncertainty about the statistical model for

every triple ðx; y; zÞ. It is intuitive to take the length of such an interval as a pointwise
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measure of uncertainty. The wider the interval of extremes ½H2ð�;�jxÞ;Hþð�;�jxÞ� the

more uncertain the statistical model generating the data w.r.t. ðx; y; zÞ. Of course, if the

model is identifiable, then the interval reduces to a single point, with length zero, and there

is no uncertainty at all.

In this case, it is possible to compute the following measures of uncertainty. The first

one is based on computing for each point ðx; y; zÞ the distance between the extrema

H2ð y; zjxÞ;Hþð y; zjxÞ.

Formally

Dyzjx ¼ HþðFð yjxÞ;GðzjxÞÞ2 H2ðFð yjxÞ;GðzjxÞÞ ð2Þ

In order to summarize the differences in (2) into an overall measure of uncertainty we may

take the average length

D ¼

ð
R3

DyzjxdTðx; y; zÞ

where Tðx; y; zÞ is a weight function on R3, i.e., a measure having total mass 1. A “natural”

choice consists in taking

dTðx; y; zÞ ¼ dFð yjxÞdGðzjxÞdQðxÞ

This distribution is “natural” because: i) it is the simplest choice given the available df’s

Fð yjxÞ, GðzjxÞ, QðxÞ and makes the integral in D easily computable in many cases;

ii) among all the possible associations between Y and Z, we consider a neutral position, i.e.,

we do not give preference to any specific positive or negative association. Hence, a

conditional measure of uncertainty is

Dx ¼

ð
R2

DyzjxdFð yjxÞdGðzjxÞ ð3Þ

As a matter of fact, integrating (3) with respect to X, we obtain again the overall measure

of uncertainty D

D ¼

ð
R

DxdQðxÞ ð4Þ

Relationships (3), (4) show that the unconditional uncertainty measure (4) can be

expressed as a weighted mean of conditional uncertainty measures (3). Then, the larger

Dx the more uncertain the data generating statistical model.

If interest is only in the joint distribution of the (not jointly observed) variables ðY; ZÞ, it

is possible also to consider the unconditional Fréchet class

ðEx½H
2ðFð yjxÞ;GðzjxÞÞ�;Ex½H

þðFð yjxÞ;GðzjxÞÞ�Þ ð5Þ

A unique number can be obtained by using an appropriate weight function Tð y; zÞ.

The uncertainty measure depends on the marginal df’s F and G, that can be estimated

by the available sample information. The asymptotic properties of the estimators of F and

G (both in the parametric and nonparametric cases) determine the asymptotic properties

of D. The limit distribution of D allows to construct confidence intervals and hypothesis

tests for the uncertainty measure.
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Example 1. Nonparametric Case – Assume that H
x
cannot be indexed by real or vector

parameters, so that H
x
is the set of all bivariate df’s having marginal df’s Fð yjxÞ and

GðzjxÞ. Denote further by Lðu; vÞ ¼ max ð0; uþ v2 1Þ, and by Uðu; vÞ ¼ min ðu; vÞ. Then

the Fréchet inequalities

LðFð yjxÞ;GðzjxÞÞ # Hð y; zjxÞ # UðFð yjxÞ;GðzjxÞÞ ð6Þ

hold true, LðFð yjxÞ;GðzjxÞÞ and UðFð yjxÞ;GðzjxÞÞ being bivariate df’s corresponding to

maximal negative and maximal positive association between Y and Z (given X).

Furthermore

UðFðþ1jxÞ;GðzjxÞÞ ¼ LðFðþ1jxÞ;GðzjxÞÞ ¼ GðzjxÞ

and

UðFð yjxÞ;Gðþ1jxÞÞ ¼ LðFð yjxÞ;Gðþ1jxÞÞ ¼ Fð yjxÞ

namely LðFð yjxÞ;GðzjxÞÞ and UðFð yjxÞ;GðzjxÞÞ both possess marginal df’s Fð yjxÞ and

GðzjxÞ.

As a consequence of Fréchet inequalities (6), we have

H2ð y; zjxÞ ¼ LðFð yjxÞ;GðzjxÞÞ

and

Hþð y; zjxÞ ¼ UðFð yjxÞ;GðzjxÞÞ

With such a choice, the overall uncertainty measure (4) becomes

D ¼

ð
R

ð
R2

½UðFð yjxÞ;GðzjxÞÞ2 LðFð yjxÞ;GðzjxÞÞ�d½Fð yjxÞdGðzjxÞ�

� �
dQðxÞ

¼

ð
R

DxdQðxÞ ¼ Ex½D
x�

ð7Þ

where

Dx ¼

ð
R2

½UðFð yjxÞ;GðzjxÞÞ2 LðFð yjxÞ;GðzjxÞÞ�dFð yjxÞdGðzjxÞ ð8Þ

is the uncertainty measure about the considered statistical model, conditionally on X ¼ x.

Further results and simplifications can be obtained when Fð yjxÞ and GðzjxÞ are

continuous df’s, so that Rx ¼ FðYjxÞ and Sx ¼ GðZjxÞ both have uniform distribution in

[0,1] for every x. From the Sklar theorem (Nelsen 1999), the joint df H may be uniquely

represented as

Hð y; zjxÞ ¼ CxðFð yjxÞ;GðzjxÞÞ ð9Þ

where Cxðu; vÞ is the copula, i.e., the joint d.f. of Rx and Sx. In this case, the conditional
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uncertainty measure simplifies to

Dx ¼

ð
½0;1�2

½Uðr; sÞ2 Lðr; sÞ�d½r s�

¼

ð1
0

ð1
0

{min ðr; sÞ2 max ð0; r þ s2 1Þ}dr ds

ð10Þ

In this setting, it is straightforward to show that the uncertainty measure (10) is equal to 1/6

for any F and G, and for any x. The value Dx ¼ 1=6 represents the maximum uncertainty

achieved when no external auxiliary information beyond the knowledge of the marginals

Fð yjxÞ and GðzjxÞ is available. As a consequence, also the unconditional uncertainty

measure (7) takes the value 1/6.

Example 2. Contingency Tables – Assume that, given a discrete rv X with I categories,

Y and Z are discrete rv’s with J and K categories, respectively, not necessarily ordered. In

this case, the whole theory developed so far can still be applied by simply replacing the

d.f.s with probability functions. With no loss of generality, the symbols i ¼ 1; : : : ; I,

j ¼ 1; : : : ; J, and k ¼ 1; : : : ;K, denote the categories taken by X, Y and Z, respectively.

Let gjkji be the probability that ðY ¼ j; Z ¼ kjX ¼ i Þ, with marginals fjji representing

the probability of the event ðY ¼ jjX ¼ i Þ and ckji representing the probability of the event

ðZ ¼ kjX ¼ i Þ. Since

Lðfjji;ckjiÞ # gj;kji # Uðfjji;ckjiÞ ð11Þ

the conditional uncertainty measure turns out to be equal to

Dx¼i ¼
XJ
j¼1

XK
k¼1

{Uðfjji;ckjiÞ2 Lðfjji;ckjiÞ}fjjickji

and the overall uncertainty measure is

D ¼
XI
i¼1

Dx¼iji

where ji represents the probability of the event ðX ¼ i Þ. Sharper results are obtained when

the categories taken by ðX; Y ; ZÞ are ordered. For the sake of simplicity, we use the

customary order for natural numbers. In this case, the cumulative df’s are

Hj;kji ¼
Xj
y¼1

Xk
z¼1

gyzji; j ¼ 1; : : : ; J; k ¼ 1; : : : ; K; i ¼ 1; : : : ; I

Fjji ¼
Xj
y¼1

fyji; j ¼ 1; : : : ; J; i ¼ 1; : : : ; I

Gkji ¼
Xk
z¼1

czji; k ¼ 1; : : : ; K; i ¼ 1; : : : ; I
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Using the same arguments as in Example 1, the inequalities

LðFjji;GkjiÞ # Hj;kji # UðFjji;GkjiÞ ð12Þ

hold. Note that inequalities (12) imply that

g2jkji # gjkji # gþ
jkji

ð13Þ

where

g2jkji ¼ LðFjji;GkjiÞ2 LðFj21ji;GkjiÞ2 LðFjji;Gk21jiÞ þ LðFj21ji;Gk21jiÞ

gþ
jkji

¼ UðFjji;GkjiÞ2 UðFj21ji;GkjiÞ2 UðFjji;Gk21jiÞ þ UðFj21ji;Gk21jiÞ

Then, it is not difficult to realize that

g2jkji $ Lðfjji;ckjiÞ

gþ
jkji

# Uðfjji;ckjiÞ

so that inequalities (13) are sharper than (11). At any rate, the conditional uncertainty

measure is

Dx¼i ¼
XJ
j¼1

XK
k¼1

{UðFjji;GkjiÞ2 LðFjji;GkjiÞ}fjjickji ð14Þ

and the unconditional uncertainty measure is

D ¼
XI
i¼1

Dx¼iji ð15Þ

In contrast with what was found in Example 1, D is not equal to 1/6, since the

uncertainty measure depends on the marginal probabilities of YjX and ZjX.

Example 3. Multinormal Distribution – Let X, Y, Z, be jointly multinormally distributed,

with mean vector and covariance matrix equal to

m ¼

mx

my

mz

2
664

3
775; S ¼

s2
x sxy sxz

sxy s2
y syz

sxz syz s2
z

2
6664

3
7775 ð16Þ

respectively. All bivariate marginals are still multinormal, with mean vectors and

covariance matrices easily obtained from (16). Furthermore, conditionally on X, (Y, Z) do

have joint bivariate normal distribution, with mean vector and covariance matrix given by

myzjx ¼

my þ by=xðx2 mxÞ

mz þ bz=xðx2 mxÞ

2
64

3
75;

Syzjx ¼

s2
y 12 r2xy

� �
syszðryz 2 rxyrxzÞ

syszðryz 2 rxyrxzÞ s2
z 12 r2xz
� �

2
664

3
775

ð17Þ
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where

byjx ¼
sxy

s2
x

;bzjx ¼
sxz

s2
x

are the regression coefficients of Y, Z w.r.t. X, respectively, and

rxy ¼
sxy

sxsy

; rxz ¼
sxz

sxsz

; ryz ¼
syz

sysz

are the correlation coefficients between ðX; YÞ, ðX; ZÞ, ðY ; ZÞ, respectively.

The only unidentified parameter is ryz, the correlation coefficient between Y

and Z. From (17) it is immediate to see that, given rxy and rxz, ryz ranges in the interval

rxyrxz 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2xy

� �
12 r2xz
� �r

; rxyrxz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2xy

� �
12 r2xz
� �r� 	

ð18Þ

From the Slepian (1962) inequality, the joint d.f. of Y, Z given X is an

increasing function of the correlation coefficient between Y and Z given X:

ryzjx ¼
ryz 2 rxyrxzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 r2xy

� �
12 r2xz
� �r

i.e., it turns out to be a monotone function of ryz. In other words, the

conditional d.f.s Hð y; zjxÞ are totally ordered on the basis of ryz. The case

ryz ¼ rxyrxz 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 r2xyÞð12 r2xzÞ

q
corresponds to ryzjx ¼ 21, so that conditionally

on X, Y is a linear decreasing function of Z (and vice versa). As a consequence,

H2ð y; zjxÞ ¼ max ð0;Fð yjxÞ þ GðzjxÞ2 1Þ, as in Example 1. Similarly, the case

ryz ¼ rxyrxz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 r2xyÞð12 r2xzÞ

q
corresponds to ryzjx ¼ 1, i.e., to Hþð y; zjxÞ ¼

min ðFð yjxÞ;GðzjxÞÞ, again as in Example 1. As a consequence, the computation

of uncertainty measures parallels the nonparametric case.

The assumption of multinormal distribution of ðX;Y ; ZÞ is largely debated

in the statistical matching literature, since the seminal paper by Kadane (1978).

Useful discussions and advances are to be found in Moriarity and Scheuren (2001),

Rässler (2002), Kiesl and Rässler (2008).

At first glance, results of Examples 1, 3 seem to be contradictory. In the

multinormal case, uncertainty affects the correlation coefficient ryz. Uncertainty

bounds for the correlation coefficients are determined by the condition that the

correlation matrix of ðX; Y ; ZÞ must be positive definite. In this case, the uncertainty

space restricts continuously to a single value when rxy or rxz go continuously to 1

(or 21). The width of the Fréchet class behaves differently. The lower and upper

bounds of the Fréchet class only depend on the marginal df’s of Y and Z (given X).

The copula transformation makes such marginals uniform in the interval (0, 1), and

hence the whole Fréchet class is always mapped on the same subset of the square

(0, 1)2. This is why the uncertainty measure remains constantly equal to 1/6.

A discontinuity happens if either Y or Z is fully determined by X. In this case, the

square (0, 1)2 collapses to the segment (0, 1), and the uncertainty measure becomes

equal to zero.
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Example 4. Skew-normal Distribution – Suppose that the joint distribution of ðY ; ZÞ,

conditionally on X, does possess a bivariate skew-normal distribution with parameters

ðd;V;a; tÞ, (see Capitanio et al. 2003), where

V ¼
vyy vyz

vyz vzz

 !

is a 2 £ 2 matrix. In particular, vyz is the association parameter between Y and Z, given X,

and ranges in the interval ð21; 1Þ. Of course, this means that also the distribution of

ðX; Y ; ZÞ does possess (extended) skew-normal distribution as shown in Capitanio et al.

(2003). As vyz tends to þ1, ðY ; ZÞjX tends to be perfectly positively correlated, so that

Hþð y; zjxÞ ¼ min ðFð yjxÞ;GðzjxÞÞ, again as in Example 1.

However, as vyz tends to 21, Y and Z (given X) do not achieve the situation of perfect

negative correlation. Hence, H2ð y; zjxÞ $ max ð0;Fð yjxÞ þ GðzjxÞÞ.

Example 5. Farlie-Gumbel-Morgenstern Distribution – Suppose that X is distributed as a

uniform in ½0; 1�. Conditionally on X, let Y and Z be marginally distributed as uniform

distributions in ½0; x�. Furthermore, the joint d.f. of ðY ; ZÞ given X is:

Hð y; zjxÞ ¼
y

x

z

x
1þ a 12

y

x

� �
12

z

x

� �h i
ð19Þ

where 21 # a # 1 (otherwise (19) is not a distribution function), 0 # y # x, 0 # z # x.

The maximal value Hþð y; zjxÞ is obtained when a ¼ 1, and is equal to

Hþð y; zjxÞ ¼
y

x

z

x
1þ 12

y

x

� �
12

z

x

� �h i
which is strictly smaller than min ðFð yjxÞ;GðzjxÞÞ. On the other hand, the minimal value

H2ð y; zjxÞ is obtained when a ¼ 21, and is equal to

H2ð y; zjxÞ ¼
y

x

z

x
12 12

y

x

� �
12

z

x

� �h i
which is strictly greater than max ð0;Fð yjxÞ þ GðzjxÞÞ.

3. Reducing Uncertainty

When auxiliary information in the form of logical constraints regarding the statistical

model for ðY ; ZÞ or ðY; ZjXÞ is available, some models for ðX; Y ; ZÞ become illogical and

must be excluded from the set of plausible distribution functions. As a consequence, the

statistical model for the data becomes less uncertain. This kind of information is frequently

used, for instance, in imputation and editing, see Luzi et al. (2007). The introduction of

such constraints may complicate the estimation process, because there could be no

probability distributions satisfying both the logical constraints and lying in the set of all

estimated bivariate distributions.

There are essentially two types of constraints:

1. constraints on the values of the parameters;

2. constraints on the support of ðY ; ZÞ or ðY ; ZjXÞ.
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The first kind of constraints is essentially used in the parametric case. They have been

largely studied in D’Orazio et al. (2006a) when ðX; Y; ZÞ are categorical. The constraints

are in terms of inequalities between the cell probabilities of the contingency table ðY; ZÞ or

ðY ; ZÞjX. In the normal case, these constraints can be used when information on the

correlation coefficient ryz or equivalently ryzjx is available, see Rässler (2002).

The second kind of constraints has been mainly used in the parametric-multinomial case

(D’Orazio et al. 2006a). These constraints have beendefined in terms of structural zeros on the

joint ðY ; ZÞ distribution. InVantaggi (2008) a different estimationmethod todealwith the case

of constraints in form of structural zeros in a coherent probability framework is proposed.

The use of structural zeros for reducing uncertainty has been confined to the case of

categorical rv’s. In fact, for continuous rv’s the introduction of structural zeros

corresponds to the restriction of the ðY ; ZÞ or ðY ; ZjXÞ support to a subset of the Cartesian

product of the Y and Z supports, i.e., ðY; ZÞ is fully concentrated on a set of points

ð y; zÞ [ R2. The relationship between the original marginal parameters and the joint ðY; ZÞ

distribution is heavily dependent on the nature of this constraint and does not allow easy

generalizations. For instance, even if both ðYjXÞ and ðZjXÞ follow a normal distribution,

the introduction of a structural zero will prevent ðY ; ZjXÞ from being bivariate normal. As

a matter of fact, structural zeros can be easily used in a nonparametric approach, and the

estimation of uncertainty can be performed using Equations (3) and (4).

For the sake of simplicity, assume that Y and Z are continuous r.v.’s, that X is a

discrete r.v., and that the support constraints have the following shape: ax # Y=Z # bx
given X. An example of this kind of constraint happens in household surveys, when X

is a household socio-economic character, Y the household consumption and Z the

household income. Conditionally on X, the inequality ax # Y=Z # bx holds. Using the

notation a ^ b ¼ min ða; bÞ, it is not difficult to see that the pair of inequalities

Lx G z ^
y

ax
jx


 �
;Fð y ^ bxzjxÞ


 �
# Hðz; yjxÞ # Ux G z ^

y

ax
jx


 �
;Fð y ^ bxzjxÞ


 �

holds, where

Ux G z ^
y

ax
jx


 �
;Fð y ^ bxzjxÞ


 �
¼ min G z ^

y

ax
jx


 �
;Fð y ^ bxzjxÞ


 �

¼ min GðzjxÞ ^ G
y

ax
jx


 �
;Fð yjxÞg ^ FðbxzjxÞ


 �

¼ min GðzjxÞ;G
y
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jx


 �
;Fð yjxÞ;FðbxzjxÞ
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ð20Þ

Lx G z ^
y
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 �
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 �
þ Fð y ^ bxzjxÞ2 1
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With obvious notation, according to (8) the conditional uncertainly measure is then

Dx
c ¼

ð
R2

Ux G z ^
y

ax
jx


 �
;Fð y ^ bxzjxÞ


 �


2Lx G z ^
y

ax
jx


 �
;Fð y ^ bxzjxÞ


 ��
dFð yjxÞdGðzjxÞ

ð22Þ

where c denotes the constraint ax # Y=Z # bx. The unconditional uncertainty measure is

easily obtained from (22) by averaging w.r.t. the distribution of X.

As remarked above, in this case both conditional and unconditional uncertainty

measures are strictly smaller than 1/6. In other words, the constraint ax # Y=Z # bx
reduces the uncertainty about the statistical model.

Clearly, the reduction in the model uncertainty depends on how informative the

imposed constraints are. In some circumstances, the logical constraints can be so

informative that the Fréchet class reduces to a unique distribution. This happens when Z

can be exactly predicted by X (or alternatively by ðX; YÞ) due to a deterministic

relationship between X and Z (or ðX; Z; YÞ). The effects on model uncertainty due to the

introduction of logical constraints in a nonparametric setting are investigated in Conti et al.

(2009b). Moreover, in Conti et al. (2009b) estimators of conditional and unconditional

measures of uncertainty under logical constraints are proposed and their consistency and

asymptotic normality are proved.

4. A Simulation Study

In this section we perform a simulation experiment in order to evaluate the effects on

model uncertainty due to the introduction of logical constraints and in order to investigate

the asymptotic behavior of the uncertainty measures proposed in Section 3. The simulation

involves the following steps.

1. A sample A composed by nA i.i.d. records has been generated according to a bivariate

normal distribution ðX; YÞ with mean vector mxy ¼ ð0; 0Þ and covariance matrix given

by

Sxy ¼
1 0:5

0:5 1

 !

2. A sample B composed by nB i.i.d. records has been generated according to a bivariate

normal distribution ðX; ZÞwith mean vector mxz ¼ ð0; 0Þ and covariance matrix given by

Sxz ¼
1 0:8

0:8 1

 !

3. Since X is a continuous variable in order to compute the uncertainty measures we

need to discretize it. The range of observed values x ¼ xA < xB has been divided into

I ¼ 20 intervals according to the hth percentiles of data, for h ¼ 52 95ð5Þ. Formally,

the discretized variable will assume the value x ¼ i, for i ¼ 1; : : : ; 20.
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4. Conditionally on x ¼ i (for i ¼ 1; : : : ; 20) the pointwise measure of uncertainty in

ðx; y; zÞ is estimated by

D̂yzjx ¼ minðĜnBðzjxÞ; F̂nAð yjxÞÞ2 maxðĜnB ðzjxÞ þ F̂nAð yjxÞ2 1; 0Þ ð23Þ

where F̂nAð yjxÞ and ĜnB ðzjxÞ are the empirical distribution functions of Fð yjxÞ and

GðzjxÞ, respectively. Let nA;x and nB;x be the number of units such that x ¼ i in samples A

and B, and denote by y ¼ ð y1;x; : : : ; ynA;xÞ and z ¼ ðz1;x; : : : ; znB;xÞ the corresponding

sample values of Y and Z, respectively. Then, for x ¼ i we obtain nA;xnB;x pointwise

uncertainty measures (23).

5. Conditionally on x ¼ i the uncertainty measure when no external auxiliary

information is available is obtained by averaging the nA;xnB;x pointwise uncertainty

measures (23).

Formally

D̂x¼i ¼
1

nA;xnB;x y[y

X
z[z

X
D̂yzjx ð24Þ

6. The overall unconditional uncertainty measure is a weighted mean of the conditional

uncertainty measure (24)

D̂ ¼
x

X
Dx¼ip̂ðxÞ ð25Þ

where

p̂ðxÞ ¼
nA;x þ nB;x

nA þ nB


 �
ð26Þ

7. Suppose that auxiliary information in the form of logical constraints regarding the

statistical model for ðX; Y ; ZÞ is available. More specifically let us assume that there

exist constants ax and bx such that ax # Y=Z # bx. In the simulation study we set

ax ¼ 0:1=x and bx ¼ 1=x. Then, conditionally on x ¼ i and under the constraint

0:1=x # Y=Z # 1=x, the pointwise uncertainty measure in ðx; y; zÞ is estimated by

D̂
yzjx

c ¼ Û xð y; zÞ2 L̂ xð y; zÞ

where the subscript c represents the constraint and

Û xð y; zÞ ¼ min{F̂nAð yjxÞ; F̂nA ðbxzjxÞ; ĜnB ðzjxÞ; ĜnB ð y=axjxÞ} ð27Þ

L̂ xð y; zÞ ¼ max{0; minðF̂nAð yjxÞ; F̂nA ðbxzjxÞÞ þ minðĜnB ðzjxÞ; ĜnBð y=axjxÞÞ2 1} ð28Þ

8. Conditionally on x ¼ i the estimator of conditional uncertainty measure under the

constraint 0:1=x # Y=Z # 1=x is given by

D̂
x¼i

c ¼
1

nA;xnB;x y[y

X
z[z

X
D̂
yzjx

c ð29Þ
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9. The overall unconditional uncertainty measure under the constraint 0:1=x # Y=Z #

1=x is obtained as a weighted mean of conditional uncertainty measures (29)

D̂c ¼
X
x

D̂
x¼i

c p̂ðxÞ ð30Þ

where p̂ðxÞ is given by (26).

10. Steps 1 to 9 have been repeated 500 times and for different sample sizes

nA ¼ nB ¼ n ¼ ð1; 000; 2; 000; 5; 000Þ.

Given n, for each sample s (for s ¼ 1; : : : ; 500) and for each category i (for

i ¼ 1; : : : ; 20) denote by D̂x¼i;s,D̂s, D̂
x¼i;s

c , D̂
s

c the uncertainty measures (24), (25), (29) and

(30), respectively.

As for the conditional uncertainty measure estimates (24), their average over simulation

runs is

�Dx¼i ¼
1

500

X500
s¼1

D̂x¼i;s ð31Þ

while

�D ¼
1

500

X500
s¼1

D̂s ð32Þ

represents the corresponding overall uncertainty. The standard deviation of D̂x¼i;s, again

over simulation runs, is equal to

SDðD̂x¼iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

499

X500
s¼1

ðD̂x¼i;s 2 �Dx¼iÞ2

vuuut ð33Þ

and the corresponding mean squared error is given by

MSEðD̂x¼iÞ ¼ ½SdðD̂x¼iÞ�2 þ ð �Dx¼i 2 Dx¼iÞ2 ð34Þ

where Dx¼i ¼ 1=6.

Analogously, if we refer to the conditional uncertainty measure estimates (29), we have

that the average over simulation runs is given by

�Dx¼i ¼
1

500

X500
s¼1

D̂
x¼i;s

c ð35Þ

while

�Dc ¼
X500
s¼1

�D
s

c ð36Þ
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is the corresponding overall uncertainty under the constraint 0:1=x # Y=Z # 1=x. The

standard deviation over simulation runs is

SD D̂
x¼i

c

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

499

X500
s¼1

D̂
x¼i;s

c 2 �D
x¼i

c

� �2vuuut ð37Þ

and finally the corresponding mean squared error is

MSE D̂
x¼i

c

� �
¼ Sd D̂

x¼i

c

� �h i2
þ �Dx¼i 2 Dx¼i

c

� �2
ð38Þ

where Dx¼i
c is the actual conditional uncertainty measure for the ith category under

the constraint c. The values Dx¼i
c have been numerically computed. More specifically

N ¼ 30; 000 i.i.d. records have been generated from ðX; YÞ and ðX;ZÞ according to

the distributions specified in Steps 1 and 2. The actual overall uncertainty measure under

the constraint is given by

Dc ¼
1

20

X20
i¼1

Dx¼i
c ø 0:11225 ð39Þ

4.1. Simulation Results

In Table 1 the uncertainty measures �D and �Dc given by (32) and (36), respectively, are

reported for different values of the sample size n. Note that �D is always smaller than 1/6,

and that it tends to 1/6 as the sample size n increases. Furthermore, the constraint

0:1=x # Y=Z # 1=x reduces the model uncertainty for ðX; Y ; ZÞ from �D ø 0:16 to
�Dc ø 0:11.

In Figure 1 the expectation of the estimated uncertainty (31) is reported. As the category

x ¼ i varies, the expected estimated uncertainty is essentially the same. Furthermore, as

the sample size n increases from 1,000 to 5,000, for each category x ¼ i the expectation of

the estimated mean uncertainty tends to 1/6 and the precision of our estimator increases as

shown in Figure 2, where the standard deviation (33) is reported. As shown in Figure 3, as

n increases, the mean squared error (34) decreases for each category x ¼ i. Such a property

comes from the consistency of the empirical distribution functions F̂nAð yjxÞ and ĜnB ðzjxÞ

as estimators of Fð yjxÞ and GðzjxÞ, respectively.

The same analysis has been performed under the constraint 0:1=x # Y=Z # 1=x where

ax ¼ 0:1=x and bx ¼ 1=x. Conditional and unconditional uncertainty measures

Table 1. Uncertainty measures

as the sample size n varies

n �D �Dc

1,000 0.16653 0.10946
2,000 0.16663 0.11068
5,000 0.16666 0.11163
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(numerically computed) are reported in Figure 4. The horizontal line is the unconditional

uncertainty measure, while the dashed line depicts the conditional uncertainty measure as

x ¼ i varies. Conditional uncertainty takes small values, about 3 £ 1022 –7 £ 1022, for

x ¼ 1–5(1), while it is about 0.15 for the categories x ¼ 132 18ð1Þ. The behavior of the

corresponding estimates is shown in Figures 5, 6 and 7. In particular, in Figure 5 the

expectations of the estimated uncertainty for sample sizes n ¼ 1; 000; 2; 000; 5; 000, i.e.,
�D
x¼i

c given by (35), are reported. The absolute bias of estimators is approximately constant
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and small, if compared to the corresponding true uncertainty measures. In Figures 6, 7 the

standard deviation (37) and the mean squared error (38) of our uncertainty estimators are

reported. The highest efficiency of estimation is obtained for the classes x ¼ 12 5ð1Þ.

The smallest efficiency is obtained for the classes x ¼ 122 16ð1Þ. At any rate, we stress

that the mean squared errors of conditional uncertainty estimators are all considerably

small, ranging from 1023 to 1:3 £ 1022.

In Figure 8 the Kernel density estimate of the overall uncertainty measure under the

constraint 0:1=x # Y=Z # 1=x is shown. Such an estimate has been computed using for
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each sample size n the 500 value �Dc given by (30). Note that as the sample size n increases

the uncertainty measure distribution tends to a normal distribution as proved in Conti et al.

(2009b). The bandwidth selection rule is given by Sheather and Jones (1991). Similar

considerations hold for the estimated conditional uncertainty measures.

5. Concluding Remarks

The approach described in the above sections seems weird in statistical inference: the

result of an estimation process is not a single value, or a single distribution, but a set of
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values or a set of distributions. Such sets are justified by the lack of joint information on

the rv’s of interest Y and Z, and can be mitigated (although not avoided) by strong

statistical relationships of X with Y and/or Z, as well as by constraints justified by logical

rules on the ðY ; ZÞ joint distribution. If a set is not acceptable, it is then necessary to include

additional assumptions, such as the CIA. However, the use of additional assumptions,

sometimes neither theoretically justified nor testable on the available data, is not a benefit,

as stated in the so-called “law of decreasing credibility” (cf. Manski 2003): the credibility

of inference decreases with the strength of the assumption maintained.
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The present article essentially acknowledges the importance of the law of decreasing

credibility. The measure of uncertainty defined in Section 2 aims at measuring the

“credibility of inferences” that can be made on the basis of available data and prior

information. Similar approaches have also been used in the areas of statistical disclosure

control (cf. Fienberg and Slavkovic 2005), ecological inference (cf. King 1997) and

analysis of partially observed data sets when neither MAR nor MCAR assumptions are

made (cf. Imbens and Manski 2004).
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