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Linear filters used in seasonal adjustment (model-based or from the X-11 method) contain unit
root factors in the form of differencing operators and seasonal summation operators. The
extent to which the various filters (seasonal, seasonal adjustment, trend, and irregular) contain
these unit root factors determines whether the filters reproduce or annihilate (i ) polynomial
functions of time, and (ii ) fixed seasonal effects. This article catalogs which unit root factors
are contained by the various filters for the most common approaches to model-based seasonal
adjustment, and for X-11 seasonal adjustment with or without forecast extension. Both
symmetric and asymmetric filters are considered.
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1. Introduction

Common approaches to model-based seasonal adjustment are based on linear filters. The

same is true of the widely used X-11 method of seasonal adjustment in either the additive

or log-additive modes (Ladiray and Quenneville 2001), and Young (1968) asserted

this can be regarded as approximately true for X-11’s multiplicative mode. These linear

filters contain unit root factors in two forms that are of interest here. One is

differencing operators, (1 2 B)d for some integer d $ 1, where B is the backshift operator

(Byt ¼ yt21). The other is the seasonal summation operator, denoted here as

U(B) ¼ 1 þ B þ : : : þ B s21, where s is the seasonal period.

Interest in the presence of unit root factors in filters stems from the fact that this

determines whether given filters annihilate or reproduce polynomial functions of time

(e.g., a0 þ a1t) or fixed seasonal effects. For polynomial functions of time, suppose

vsðBÞ ¼
P

j vs j B
j is a seasonal filter and vN(B) ¼ 1 2 vS(B) is the complementary

seasonal adjustment filter. If, for example, vS(B) contains (1 2 B)(1 2 F) ¼ 2F(1 2 B)2,

where F ¼ B 21 is the forward shift operator, then vS(B) annihilates a linear time trend

(since (1 2 B)2[a0 þ a1t ] ¼ 0), while vN(B) reproduces this function. More generally, if

vS(B) contains (1 2 B)d for d . 0, then it will annihilate polynomials of degree up to

d 2 1, and vN(B) will reproduce them. Sections 3–6 show that the various seasonal filters
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considered here all contain a (1 2 B)d factor, though of varying degrees d. This is also true

of the various irregular filters.

Fixed seasonal effects constitute a deterministic pattern that repeats itself every year and

also sums to 0 over any consecutive 12 months (or four quarters) of data. These patterns

can be expressed as regression effects,
P

i bixit, where the xit are either seasonal contrast

variables or, equivalently, trigonometric terms at the seasonal frequencies. (See Findley

et al. l998 or U.S. Census Bureau 2009 for specifics.) For fixed seasonal effects the

relevant question is whether a seasonal adjustment filter vN(B) annihilates these effects,

so that the corresponding seasonal filter vS(B) reproduces them. This will be the case if

vN(B) contains U(B). Section 8 notes that indeed all the seasonal adjustment filters

considered here, along with the corresponding trend and irregular filters, include a factor

U(B). Symmetric seasonal adjustment, trend, and irregular filters contain not just U(B),

however, but U(B)U(F) ¼ U(B)U(B)F11 for model-based, and U(B)(1 þ F) for X-l1.

(Note that 1 þ F is a factor of U(F).)

This article catalogs results on unit root factors in seasonal, seasonal adjustment, trend,

and irregular filters used by various proposed model-based approaches to seasonal

adjustment, and in such filters used by the X-11 method. Both symmetric and asymmetric

filters are considered. Some of the results have no doubt been noted before for specific

cases, and the results for model-based filters are obvious from their formulas. The general

results given here for X-11 filters appear to be new. The focus, though, is not so much on

deriving new results, but rather on collecting and discussing the complete set of results for

all these filters.

Section 2 reviews the general form of seasonal time series models that have been

used both for developing model-based seasonal adjustment methods and for forecast

extension in the X-11-ARIMA (Dagum 1980) and X-12-ARIMA programs. The key

feature of these models that is of interest here is their use of nonseasonal and

seasonal differencing operators, yielding differencing of the observed series by

(1 2 B)d21(1 2 B s) ¼ (1 2 B)dU(B) for some d . 0. Section 2 also provides two

theorems on reproduction of deterministic functions (polynomials and fixed seasonal

effects) when forecasting from such models. These results are used in the subsequent

sections to obtain results on unit root properties of asymmetric filters.

Sections 3–6 present the results on nonseasonal unit root factors (1 2 B) in the various

seasonal and irregular filters. Section 3 considers model-based filters, Section 4 X-11

symmetric filters, Section 5 asymmetric filters obtained by applying X-11 symmetric

filters to a series with full forecast and backcast extension, and Section 6 the original X-11

asymmetric filters. Section 7 then provides an illustration of the results of Section 6.

Section 8 presents and discusses results on seasonal unit root factors in model-based

and X-11 filters, both symmetric and asymmetric. Finally, Section 9 provides a

closing discussion.

In the presentation we usually assume the time series is monthly (s ¼ 12).

Corresponding results for quarterly series are generally either the same as those

for monthly series, or follow from the latter with obvious modifications (e.g., replace

12 by 4). The modifications needed for quarterly series will be noted. To limit the length

of the presentation, proofs and derivations of results are omitted, but can be found in

Bell (2010).
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2. Time Series Models Used in Seasonal Adjustment

The additive decomposition used for seasonal adjustment is

yt ¼ St þ Tt þ It ð1Þ

where yt is the observed time series (possibly after transformation, e.g., taking logarithms),

and St, Tt, and It are the seasonal, trend, and irregular components. We also let Nt ¼ Tt
þ It ¼ yt 2 St denote the nonseasonal component, the estimate of which is known as the

seasonally adjusted series. Most of the models that have been proposed for model-based

seasonal adjustment use component models that can be written in the following form:

UðBÞSt ¼ ut

ð12 BÞdTt ¼ vt

It , i:i:d:Nð0;s2
I Þ

ð2Þ

where ut and vt have mean zero for all t and are independent of each other and of It.

Typically, ut and vt follow stationary autoregressive moving average (ARMA) Gaussian

models (Box and Jenkins 1970), though particulars of the models for ut and vt are not

needed here for the most part. We require only that ut and vt be stationary with

autocovariance functions gu(k) ¼ Cov(ut, utþ k) and gv(k) ¼ Cov(vt, vtþ k) that are

absolutely summable, that is,
P1

k¼21jguðkÞj , 1 and
P1

k¼21jguðkÞj , 1. This summ-

ability condition is satisfied by stationary ARMA models. We let guðBÞ ¼
P1

k¼21guðkÞB
k

and gvðBÞ ¼
P1

k¼21gvðkÞB
k denote the autocovariance generating functions (ACGFs)

of ut and vt. The ACGF of It is just s
2
I .

The Gaussian assumption made above is not essential. Without it, forecasting and

signal extraction results given later are interpretable as linear projections, though not

as conditional expectations. Also, we could extend (2) to let It follow a stationary and

invertible ARMA model instead of requiring it to be white noise (independent and

identically distributed over t). This extension would not materially alter the results

presented here.

With the component models given in (2), we can write the model for yt in terms of

the component model for the differenced series wt ¼ ð12 BÞdUðBÞyt ¼ ð12 BÞd21

ð12 B12Þyt:

wt ¼ ð12 BÞdUðBÞyt ¼ ð12 BÞdut þ UðBÞvt þ ð12 BÞdUðBÞIt: ð3Þ

The ACGF of wt is given by

gwðBÞ ¼ ð12 BÞdð12 FÞdguðBÞ þ UðBÞUðFÞgvðBÞ þ ð12 BÞdUðBÞð12 FÞdUðFÞs2
I :

We shall assume that the models for wt and yt given by (3) are invertible.

The model framework of Equations (1)– (3) covers the canonical ARIMA

(autoregressive integrated moving average) model-based approach to seasonal adjustment

as developed by Hillmer and Tiao (1982) and Burman (1980), and implemented in the

TRAMO-SEATS software of Gomez and Maravall (1997). This is the most common

model-based procedure actually used for official seasonal adjustments. The model

framework of (1)–(3) also covers the structural components models of Harvey (1989) and
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Durbin and Koopman (2001). The ARIMA models used for forecast extension in the

X-11-ARIMA and X-12-ARIMA programs are also of the general form of (3). Regression

terms are often added to these models to account for trading-day and other effects. As

regression effects do not usually affect the unit root properties of the seasonal adjustment

methods examined here, we shall not, with one exception, bother including them in the

models we present here. The one exception involves trend constants––an overall nonzero

mean for the differenced series, wt. Trend constants do affect the degree of polynomials

annihilated and reproduced by some of the various filters, so these are explicitly

considered.

We now establish two results on forecasting with models of the general form given

by (3). Let dðBÞ ¼ 12 d1B2 · · ·2 ddþ11B
dþ11 ¼ ð12 BÞd21ð12 B12Þ. Bell (2004,

Section 12.3.3) notes that minimum mean squared error (MMSE) forecasts ŷtjn of yt for

t . n from finite data y ¼ (y1, : : : , yn)
0 satisfy

ŷtjn ¼ d1ŷt21jn þ · · ·þ ddþ11ŷt2d211jn þ ŵtjn ð4Þ

where ŷjjn ¼ yj, for j ¼ 1, : : : , n, and ŵtjn ¼ EðwtjwÞ is the MMSE forecast of wt under

the Model (3) given the observed differenced data, w ¼ (wdþ12, : : : ,wn)
0. Result (4)

follows under Assumption A of Bell (1984) about starting values for the series yt, and is

consistent with the standard approach to forecasting nonstationary time series used, for

example, in Box and Jenkins (1970). Theorem 1 establishes what happens if the forecast

procedure defined by (4) is applied to any deterministic function jt that is annihilated by

d(B). Note that in doing this the Model (3) is taken as given, so the forecast procedure does

not involve fitting (3) to jt taken as data.

Theorem 1: Forecasting via (4) with the model given by (3) reproduces any

deterministic function jt that is annihilated by d(B). For d(B) ¼ (1 2 B)dU(B), these jt
include (a) polynomials in t of degree less than d, (b) fixed seasonal effects, and (c) linear

combinations of these two. Higher-order deterministic functions, such as polynomials of

degree d or more, are not reproduced.

Since the backward model for yt has the same form as the usual (forward) model, just

with F replacing B in the AR, differencing, and MA operators (Box and Jenkins 1970,

pp. 197–198), the results of the theorem also hold for MMSE backcasting.

Models of the general form (3) can be extended by addition of a trend constant, which

is a nonzero mean mw for the differenced series wt:

ð12 BÞdUðBÞyt ; wt ¼ mw þ ~wt ð5Þ

where ~wt ¼ wt 2 mw has Eð ~wtÞ ¼ 0, and now w̃t follows the model given for wt in (3).

To obtain forecasts from this model, we modify (4) to

ŷtjn ¼ mw þ d1ŷt21jn þ · · ·þ ddþ11ŷt2d211jn
þ ~wtjn ð6Þ

where ~wtjn ¼ Eð ~wtjwÞ. We also need to substitute an estimate of mw into (6). We could use

the sample mean, w̄, of wt, or a generalized least squares (GLS) estimate

m̂w ¼ ð1 0S
21
wÞ=ð1 0S21

1Þ ð7Þ

where 10 ¼ (1, : : : ,1) andS is any positive definite covariance matrix. SettingS/ I gives the

least-squares estimate, w̄. SettingS ¼ Sw gives the optimalGLS estimate under theModel (5).
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For the Model (5), we have the following analog to Theorem 1. Note that the model

defined by (5) and (3) is taken as given except for the estimation of mw by (7), which is

regarded as part of the forecast procedure. The use of (7) is for finite data. With data

extending into the infinite past, m̂w can be assumed to converge to mw, which can then be

taken as known.

Theorem 2: Forecasting via (6) with the trend constant Model (5) reproduces (a)

polynomials in t up to degree d, (b) fixed seasonal effects, and (c) linear combinations of

these two.

Theorem 2 can be extended to a model where EðwtÞ ¼ a0 þ a1t þ · · ·þ aht
h to show

that forecasting with this model reproduces polynomials up to degree h þ d. The simplest

version of this would have h ¼ d ¼ 1, which implies a quadratic time trend in the data.

As use of quadratic or higher-order polynomial trends should be very unusual in practice,

we shall not pursue this additional generality here.

3. Differencing Factors in Model-Based Filters

Results on unit root factors in model-based filters follow directly from expressions for

the signal extraction estimates that form the basis of model-based seasonal adjustment.

We consider the results for three cases defined by the amount of data used in the signal

extraction: the doubly infinite realization {yt for t ¼ 21, : : : ,1}; the semi-infinite

realization {yt for t # n} for some finite n; and the finite vector of observations

y ¼ ( y1, : : : , yn)
0. The first of these leads to symmetric infinite filters, the second to

asymmetric infinite filters, and the third to finite filters (of which at most one will be

symmetric).

Bell (1984) presents results on signal extraction with a doubly infinite realization of yt
for models of the form of (l)–(3). The MMSE linear signal extraction estimate of St
given {yt for t ¼ 21, : : : ,1} is Ŝt ¼ wSðBÞyt where

vSðBÞ ¼
guðBÞ

gwðBÞ
ð12 BÞdð12 FÞd: ð8Þ

Analogous to (8), the linear filters for the MMSE estimates of Nt, Tt, and It are

vNðBÞ ¼
gzðBÞ

gwðBÞ
UðBÞUðFÞ ð9Þ

vT ðBÞ ¼
gvðBÞ

gwðBÞ
UðBÞUðFÞ ð10Þ

vIðBÞ ¼
s2
I

gwðBÞ
UðBÞUðFÞð12 BÞdð12 FÞd: ð11Þ

In (9), gzðBÞ ¼ gvðBÞ þ ð12 BÞdð12 FÞds2
I is the ACGF of zt ; ð12 BÞdNt ¼ vtþ

ð12 BÞdIt. It can be shown that vN (B) ¼ 1 2 vS (B) ¼ vT (B) þ vI (B). In what follows,

we shall use the notations vS (B), vN (B), vT (B), and vI (B) not just for the formulas in

(8)–(11), but generically for the model-based seasonal, seasonal adjustment, trend, and
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irregular filters for all three cases––the symmetric, semi-infinite, and finite. Which case

applies will be noted in the text.

Table 1 summarizes the results for the (1 2 B) factors appearing in the MMSE model-

based seasonal and irregular filters. The corresponding seasonal adjustment and trend filters

reproduce polynomials up to the degrees shown in the table. Results for the symmetric case

follow directly from Equations (8) and (11), for the semi-infinite case from analogous

filter expressions given by Bell and Martin (2004), and for the finite case from matrix

expressions given by McElroy (2009). Bell (2010) also gives these filter expressions.

The most common models used in model-based seasonal adjustment have d ¼ 2. In this

case, we see from Table 1 that the symmetric seasonal adjustment filters will reproduce

cubic polynomials of t, while the asymmetric and finite seasonal adjustment filters will

reproduce only linear polynomials. Less commonly used models have d ¼ 1, and for these

the symmetric seasonal adjustment filters will reproduce only linear functions of time,

while the asymmetric and finite seasonal adjustment filters reproduce only constants. The

same remarks apply to the trend filters. Note that values of d other than 1 and 2 are

extremely uncommon in practice.

Notice from (8) and (11) that the symmetric vS (B) and vI (B) contain not just the

(1 2 B)d needed to remove the nonstationarities in the trend component; they contain

(1 2 B)d(1 2 F)d. Similarly, from (9)–(11), the symmetric vN (B), vT (B), and vI (B)

contain not just the U(B) needed to remove the seasonal nonstationarities of St, they

contain U(B)U(F). In the context of time series modeling, application of more differences

than needed to render a series stationary is termed “overdifferencing” (Harvey 1981). The

overdifferenced series follows a model that includes (1 2 B)k as an MA polynomial,

where k is the excessive number of differences applied. This overdifferencing by

symmetric filters is worth noting if one considers time series modeling of estimated

components. Such modeling faces other issues, however, including nonstationarities

induced by end effects from the different asymmetric filters applied at different time

points. (See Bell 1995 for related discussion.) Section 8 discusses the implications of

the symmetric vN (B), vT (B), and vI (B) containing U(B)U(F).

The asymmetric and finite seasonal filters include only (1 2 B)d, and so do not

overdifference. This is also true of the asymmetric and finite irregular filters.

Something not clear from (8)–(11) is whether these filters contain additional unit

root factors beyond those obvious from inspection. Bell (2010) notes that vI (B) will not

include additional unit root factors, while for vS (B), vN (B), and vT (B), additional unit

root factors are possible if they appear in the MA polynomials of the ARIMA models for

St, Nt, or Tt. For example, Hillmer and Tiao (1982, p. 67) examine a model for which the

canonical trend component has a factor of (1 þ B) in its MA polynomial. While potential

Table 1. Differencing factors in model-based seasonal and irregular filters

Amount of data used Differencing (1 2 B) factors Annihilates

Symmetric (doubly infinite) (1 2 B)d(1 2 F)d polynomials up to
degree 2d 2 1

Asymmetric (semi-infinite)
or finite

(1 2 B)d polynomials up to
degree d 2 1
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additional unit root factors in the filters considered can obviously be examined for any

particular model, general results are difficult to give.

If the model with a trend constant, (5), is used, we would revise (2) to

ð12 BÞdTt ; vt ¼ mv þ ~vt, and note from (3) that mw ¼ E(wt) ¼ U(B)E(vt) ¼ 12mv since

E(ut) ¼ E(It) ¼ 0. Let ht ¼ ½mw=12ðd!Þ�t
d. We can think of E( yt) ¼ ht since then

U(B)(1 2 B)dE( yt) ¼ mw. (We could add lower-order polynomial terms or fixed seasonal

effects to ht, but these would be differenced to zero in (3), and so would not be estimable.)

In the finite sample casewe substitute m̂w formw.Model-based signal extraction to estimate St
and It then appliesvS (B) andvI (B) to yt–ht. For asymmetric or finite sample signal extraction,

this can be shown to annihilate polynomials up to degree d, not just the degree d 2 1 obtained

for models without trend constants. (See Bell 2010 for more details.) Corresponding signal

extraction estimation of Nt and Tt then reproduces polynomials up to degree d. Note that

the symmetric signal extraction filters (8) and (11) can be applied directly to yt rather than

to yt–ht, since these symmetric filters annihilate polynomials of degree 2d 2 1 $ d.

Two alternative approaches to doing finite sample signal extraction calculations are worth

mentioning. First, if the models can be put in state-space form (as can ARIMA component

models), signal extraction can be done using the Kalman filter together with a suitable

initialization and a smoothing algorithm. See Bell and Hillmer (1991) or Durbin and

Koopman (2001) for this approach. Second, Cleveland (1972) suggested extending the series

as necessary with MMSE forecasts and backcasts so the MMSE symmetric filters can be

applied. (This approach also applies to the semi-infinite case with only forecast extension

needed.) The infinite filter weights decay sufficiently fast for this procedure to converge, so

that in practice only a finite, though possibly large, number of forecasts and backcasts are

needed. For ARIMAmodel-based seasonal adjustment, G. Tunnicliffe-Wilson suggested an

algorithm (reported in Burman l980) implementing this approach via a reduced set of

calculations. Both these approaches produce signal extraction estimates identical to those

from thematrix formulas ofMcElroy (2009), andhence all have the sameunit root properties.

The approach of Cleveland provides an instructive way to achieve the results of Table 1

for semi-infinite and finite filters. Forecast extension with Model (3) reproduces

polynomials up to degree d21, while the subsequent application of the symmetric versions

of vN (B) and vT (B) will reproduce polynomials up to degree 2d 2 1 $ d. Hence,

asymmetric (or finite)vN(B) andvT(B) will reproduce polynomials up to degree d 2 1, and

asymmetric (or finite)vS (B) andvI (B) annihilate suchpolynomials. The same rationale also

applies to the trend constant model (5), althoughwith thismodel forecasting, and thus signal

extraction estimation of Nt and Tt, reproduces polynomials up to degree d. Note that the

limiting factor here is the degree of polynomial reproduced by the forecast extension, since

the symmetric seasonal adjustment and trend filters will reproduce polynomials of as high

or higher degree. We shall use analogous considerations in Sections 5 and 6 to determine

unit root properties of X-11 asymmetric filters obtained with or without forecast extension.

4. Differencing Factors in X-11 Symmetric Filters

Wallis (1974) lists the filtering steps used in X-11 seasonal adjustment with the additive

decomposition (1) (and the log-additive decomposition when yt is a logged series).

(See also Ladiray and Quenneville 2001, Section 2.4). Specific X-11 filters are determined
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by the seasonal and trend MAs used, whether specified directly by the user or chosen

automatically by the program. As the particular choices of MAs will not affect the unit root

results of interest here, we shall not go into details about the choice of MAs. For this, see

Ladiray and Quenneville (2001, Chapter 3).

Bell and Monsell (1992) note that the X-11 filters can be expressed symbolically in

terms of their MAs, and so provide the following expression for the X-11 symmetric

seasonal filter, which we denote as vX11
S ðBÞ:

vX11
S ðBÞ ¼ ½12 mðBÞ�l2ðBÞ½12 HðBÞ{12 ½12 mðBÞ�l1ðBÞ½12 mðBÞ�}� ð12Þ

where

mðBÞ ¼ 2 £ 12 trend MA ¼
1

24
F 6ð1þ BÞUðBÞ ¼

1

24
ðF 6 þ 2F 5 þ · · ·þ 2B5 þ B6Þ

l1ðBÞ ¼ first seasonal MA; e:g:;
1

9
ðF 12 þ 1þ B12ÞðF 12 þ 1þ B12Þ

l2ðBÞ ¼ second seasonal MA; e:g:;
1

15
ðF 12 þ 1þ B12ÞðF 24 þ F 12 þ 1þ B12 þ B24Þ

HðBÞ ¼ Henderson trend MA:

For quarterly series we change 12 to 4 and 24 to 8 in the above expressions, and the

F 6(l þ B) to F 2(l þ B) in the definition of m(B). The Henderson trend MAs are

discussed by Kenny and Durbin (1982), Dagum (1985), and Ladiray and Quenneville

(2001, Chapter 3). Given the symmetric seasonal filter vX11
S ðBÞ, the X-11 symmetric filters

for estimating the remaining components are as follows:

vX11
N ðBÞ ¼ 12 vX11

S ðBÞ ð13Þ

vX11
T ðBÞ ¼ HðBÞvX11

N ðBÞ ð14Þ

vX11
I ðBÞ ¼ ½12 HðBÞ�vX11

N ðBÞ: ð15Þ

We shall use the notation vX11
S ðBÞ, etc., generically to denote X-11 seasonal, seasonal

adjustment, trend, and irregular filters also in subsequent sections that cover the case of

X-11 asymmetric filters with or without forecast extension.

Unit root properties of the X-11 symmetric filters can be inferred from Expressions

(12)–(15) using knowledge of the unit root properties of m(B), the seasonal MAs, and the

Henderson trend MAs. The latter properties can be determined via numerical zero finding,

or by repeated polynomial division by (1 2 B) (d times to check for a (1 2 B)d factor), or

by (1 2 B 12) or U(B) to check for these factors. This was done and the results are stated

as Lemma 1.

Lemma 1: The moving averages used in the X-11 symmetric filters have the following

unit root properties for monthly series:

(a) m(B), the 2 £ 12 MA, contains (1 þ B)U(B)

(b) 1 2 m(B) contains (1 2 B)(1 2 F)

(c) 1 2 l(B) contains (1 2 B 12)(1 2 F 12) ¼ (1 2 B)(1 2 F)U(B)U(F) for any of the

X-11 seasonal MAs l(B)
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(d) 1 2 H(B) contains (1 2 B)2(1 2 F)2 for any of the Henderson trend MAs, H(B).

No other factors of U(B), nor additional (1 2 B) factors, are contained by these MAs or

their complements. For quarterly series change 12 to 4 in (a) and (c).

Note that result (a) follows directly from the definition of m(B). Also, since the

Henderson trend MAs are explicitly designed to reproduce cubic polynomials (Kenny and

Durbin 1982), result (d) must hold.

By manipulating Expressions (12)––(15) and using the results of Lemma 1, we

can establish the unit root properties of the X-11 symmetric filters (Bell 2010). The

differencing factors contained in the seasonal and irregular filters are listed in Table 2.

Comparing Tables 1 and 2, several interesting differences emerge.

First, since it would be very unusual to have a value of d greater than 2 in Model (2),

we see that vX11
S ðBÞ contains more 1 2 B factors (effectively 6) than would a model-based

symmetric seasonal filter. Consequently, the X-11 symmetric seasonal adjustment filters

will reproduce polynomials up to degree 5, while model-based symmetric seasonal

adjustment filters will only reproduce polynomials up to degree 3 (if d ¼ 2) or 1 (if d ¼ 1).

Second, note that vX11
I ðBÞ includes (1 2 B)2(1 2 F)2, whereas vX11

S ðBÞ includes

(1 2 B)3(1 2 F)3. Though not shown in Table 2, 12vX11
T ðBÞ also includes just

(1 2 B)2(1 2 F)2. This contrasts with the results for model-based filters (Table 1 and

the discussion following), where vS(B), vI (B), and 1 2 vT (B) all include the same

(1 2 B)d(1 2 F)d factors. Hence, for X-11, the symmetric trend filter reproduces, and the

symmetric irregular filter annihilates, polynomials of lower degree than are annihilated

by the symmetric seasonal filter, whereas for model-based filters the degrees of the

polynomials annihilated or reproduced by these filters are all the same.

Third, because vX11
S ðBÞ and vX11

I ðBÞ contain as many or more (1 2 B) factors as do

the corresponding model-based symmetric filters, the remarks of Section 3 about

“overdifferencing” by the model-based symmetric filters apply also to vX11
S ðBÞ and

vX11
I ðBÞ.

Young (1968) provided alternative approximations to X-11 symmetric filters. For the

seasonal filter, Young (1968, Eq (4)) omitted two of the steps outlined by Wallis (1974)

corresponding to the first two 1 2 m(B) terms in (12). Omitting these terms yields the

following approximation, which we denote as vY
S ðBÞ:

vY
S ðBÞ ¼ l2ðBÞ½12 HðBÞ{12 l1ðBÞ½12 mðBÞ�}�: ð16Þ

Corresponding approximations to the X-11 symmetric seasonal adjustment, trend, and

irregular filters start with vY
S ðBÞ and follow as in (13)––(15). Young argued for considering

these filters when applied to logged data as an approximation to X-11’s multiplicative

decomposition. ThoughWallis’s (1974) representation of X-11 linear filters is exact, it is so

only for additive and log-additive decompositions, and it appears that the question of

Table 2. Differencing factors in X-11 symmetric linear filters

Filter Differencing (1 2 B) factors Annihilates

vX11
S ðBÞ (1 2 B)3(1 2 F)3 polynomials up to degree 5

vX11
I ðBÞ (1 2 B)2(1 2 F)2 polynomials up to degree 3
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whether Young’s approximation (16), or Wallis’s exact version with a log-additive

decomposition, provides a better approximation tomultiplicativeX-11 has not been studied.

Results on the (1-B) factors contained by Young’s approximate filters differ somewhat

from those given above for Wallis’s exact filters. First, vY
S ðBÞ contains only

(1 2 B)(1 2 F), so vY
S ðBÞ annihilates, and vY

NðBÞ reproduces, only linear polynomials in

t (not the polynomials up to degree 5 of the Wallis representation). Second, 12 vY
T ðBÞ also

contains (1 2 B)(1 2 F), and while this is less than the (1 2 B)2(1 2 F)2 contained by

12 vX11
T ðBÞ, it is consistent with the result for vY

S ðBÞ, as is the case for model-based

symmetric filters. (Note also that the model-based symmetric seasonal and irregular filters

for d¼1 also contain just the factors (1 2 B)(1 2 F).) Third, due to the presence of

1 2 H(B) in the analog to Equation (15) for Young’s filter, vY
I ðBÞ includes

(1 2 B)2(1 2 F)2, and so annihilates cubic polynomials in t, matching the result in

Table 2, but differing from the result for vY
S ðBÞ.

5. Differencing Factors in X-11 Asymmetric Filters with Full Forecast Extension

To deal with the issue of X-11 symmetric filters not being applicable near the ends of time

series, Dagum (1975) proposed extending series with forecasts and backcasts from

ARIMA models, leading to the X-11-ARIMA method (Dagum 1980). Pierce (1980) and

Geweke (1978) pointed out that extending series with optimal (MMSE) forecasts and

backcasts, that is, such that, append sufficient forecasts and backcasts to the series so the

symmetric filters could be applied at t ¼ 1, : : : , n, would minimize mean squared revisions

of the seasonally adjusted data. In practice, the true model for a series is unknown, so

optimal forecasts cannot be achieved, but the motivating idea behind these articles was that

one could find a model good enough that using its forecasts and backcasts could at least

reduce the size of the revisions. As noted in Section 2, the programs X-11-ARIMA and

X-12-ARIMA use models of the form of (3) or (5). The default option in X-11-ARIMA and

X-12-ARIMA is not full forecast extension, however, but rather extension with one year of

forecasts. (Backcast extension is usually of less concern. It can be requested in X-12, but

the default is no backcast extension.) With this approach, the original X-11 asymmetric

filters still play a role. In this section, we consider unit root properties of X-11 filters

obtained using full forecast and backcast extension. Section 6 discusses unit root properties

of X-11 filters obtained with partial forecast and backcast extension.

Unit root properties of X-11 filters obtained using full forecast extension follow from

the results of Table 2, Theorem 1 of Section 2, and the approach described at the end of

Section 3. Thus, (1 2 B) and U(B) factors occur in the various filters according to the

lesser of (i ) the degree to which they occur in the corresponding X-11 symmetric filter, and

(ii ) the degree to which polynomials or fixed seasonal effects are reproduced in

forecasting by the model used. The results for the differencing factors are given in Table 3.

Results onU(B) factors are given in Section 8. As noted in the previous section, we use the

generic notation vX11
S ðBÞ, and so on, here to denote the X-11 asymmetric filters obtained

with full forecast extension.

Notice that the results in Table 3 are the same as those in Table 1 for model-based

asymmetric filters, with just the noted exceptions that would occur for large values of d

that should never occur in practice anyway. This is because the X-11 symmetric filters
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vX11
S ðBÞ and vX11

I ðBÞ contain as many or more 1 2 B factors (see Table 2) than are

ordinarily contained by the model-based symmetric signal extraction filters (Table 1), and

so the forecasting results are what limit the number of (1 2 B) factors in both the

asymmetric model-based and asymmetric X-11 filters with full forecast extension.

As was the case for model-based asymmetric filters, the unit root factors shown in

Table 3 are just those needed to remove nonstationarities present in the other components

according to the Model (2). Thus, in contrast to the results for X-11 symmetric filters, no

“overdifferencing” occurs.

The same reasoning applies to Models (5) with trend constants. From Theorem 2 of

Section 2, adding the trend constant to the model increases the degree of polynomials

reproduced by forecasting by 1. Hence, when full forecast extension uses Model (5), we

can increase d to d þ 1 in Table 3. Per the note to Table 3, this assumes that d # 5 for the

first row of the table, and d # 3 for the last two rows.

Note that the results in Table 3 apply only at those time points for which the symmetric

filters cannot be applied and forecast extension is needed. Let the symmetric seasonal filter

be written as
Pr

j¼2rv
X11
S; j B

j with the 2r þ 1 symmetric weights vX11
S; j ¼ vX11

S;2j. We call

r the “half-length” of the symmetric filter. Then, the result in Table 3 for vX11
S ðBÞ applies

for t ¼ 1, : : : , r and t ¼ n þ 1 2 r, : : : , n, while for t ¼ r þ 1, : : : , n 2 r, the symmetric

seasonal filter is used, so the result given in Table 2 applies. For vX11
I ðBÞ, the result in

Table 3 applies for t ¼ 1, : : : , r þ p and t ¼ n þ 1 2 r 2 p, : : : , n, where p is the half-

length of HðBÞ ¼
Pp

j¼2pHjB
j, the symmetric Henderson trend MA. The value of r varies

with alternative choices of the seasonal and Henderson trend MAs, a point we discuss

further in the next section.

6. Differencing Factors in Original X-11 Asymmetric Filters

To deal with the inapplicability of the symmetric filters except in the middle of sufficiently

long time series, the original X-11 program (Shiskin et al. 1967) provided families of

asymmetric seasonal and trend MAs used in place of the symmetric versions of l1(B),

l2(B) and H(B) in Equation (12). Ladiray and Quenneville (2001, Chapter 3) discuss these

asymmetric MAs and give their filter weights. There is also need for an “asymmetric

version” of m(B), as discussed in Bell (2010). The asymmetric seasonal and trend MAs are

also needed by the X-11 procedures of X-11-ARIMA and X-12-ARIMA for use when

there is no or only partial forecast extension.

The X-11 asymmetric filters carry out the same general sequence of operations as

the X-11 symmetric filters (Wallis 1982), and so can still be loosely represented by

Expressions (12)–(15). However, the MAs in the asymmetric filters are time-varying, in

Table 3. Differencing factors in X-11 asymmetric linear filters with full forecast extension

Filter Differencing (1 2 B) factors* Annihilates*

vX11
S ðBÞ (1 2 B)d polynomials up to degree d 2 1

vX11
I ðBÞ (1 2 B)d polynomials up to degree d 2 1

* For asymmetric vX11
S ðBÞ with full forecast extension, the result assumes that d # 6; for d . 6, change d to 6 in

the first row. For vX11
I ðBÞ, the result assumes that d # 4; for d . 4, change d to 4 in the second row.
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that when insufficient observations are available to apply a symmetric MA at a given time

point, the appropriate asymmetric MA is used. Because of this, we cannot simply expand

(12)–(15) as polynomials in B with fixed weights. To determine the unit root properties of

the X-11 asymmetric filters, Bell (2010) instead examines what results from applying the

filters to sequences jt representing either fixed seasonal effects or polynomial functions

of time (1, t, t 2, etc.).

The unit root factors in the asymmetric versions of X-11’s 3-term, 3 £ 3, 3 £ 5, 3 £ 9,

and 3 £ 15 seasonal MAs were found numerically. Filter weights were taken from the

X-11 code in the X-12-ARIMA program. Ladiray and Quenneville (2001, p. 45) give

weights for the asymmetric 3 £ 3, 3 £ 5, and 3 £ 9MAs, though, for the 3 £ 9MAs the

weights given are approximations that do not quite preserve the unit root factors of

the MAs actually used in the program. Ladiray and Quenneville (2001, pp. 40–44)

also provide weights for the asymmetric Henderson trend MAs, and note that these

MAs reproduce only constants, not linear functions. Collecting these results gives the

following lemma.

Lemma 2: The asymmetric seasonal (lt(B)) and Henderson trend (Ht(B)) moving

averages used in X-11 have the following unit root properties (for monthly series):

(a) 1 2 lt(B) contains (1 2 B 12) ¼ (1 2 B)U(B) for any of the X-11 asymmetric

seasonal MAs, lt(B).

(b) 1 2 Ht(B) contains (1 2 B) for any of the asymmetric Henderson trend MAs, Ht(B).

No other factors of U(B), nor additional (1 2 B) factors, are contained by the 1 2 lt(B)

and 1 2 Ht(B). For quarterly series change 12 to 4 in (a).

Using Lemma 2, Bell (2010) derives the unit root factors in the original X-11

asymmetric filters (again, denoted generically here as vX11
S ðBÞ etc.) These results depend

on t, the time point at which the components are being estimated, and on the half-lengths of

the seasonal and trend MAs used. Let the half-lengths of the symmetric seasonal MAs,

l1(B) and l2(B), be m1 and m2, respectively. Note that these MAs involve 2m1 þ 1 and

2m2 þ 1 weights, including many weights that are zero because the only nonzero weights

in the seasonal MAs are at the seasonal lags and leads. Again, let p denote the half-length

of the symmetric H(B). The half-length, r, of the full symmetric seasonal filter can then

be seen from (12) to be r ¼ 18 þ m1 þ m2 þ p. As noted in Section 5, the X-11

symmetric seasonal filter applies for t ¼ rþ l, : : : ,n 2 r, and this filter contains (1 2 B)6.

Table 4 shows how the (1 2 B) factors in the original X-11 asymmetric seasonal filters

vary across the values of t.

Table 4. Differencing factors in original X-11 asymmetric seasonal filters

Time points vX11
S ðBÞ contains vX11

S ðBÞ annihilates

t ¼ 1,: : :, 6 þ m2 þ p (1 2 B) constants
t ¼ n þ 1 2 (6 þ m2 þ p): : :, n

t ¼ 7 þ m2 þ p,: : :, r (1 2 B)3 polynomials up to degree 2
t ¼ n þ 1 2 r,: : :, n 2 (6 þ m2 þ p)

t ¼ r þ 1,: : :, n 2 r (symmetric filter) (1 2 B)6 polynomials up to degree 5
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We see that, near the ends of the series (t ¼ 1, : : : , 6 þ m2 þ p and

t þ n þ 1 2 (6 þ m2 þ p), : : : , n), asymmetric vX11
S ðBÞ contains only 1 2 B, while for

t ¼ 7 þ m2 þ p, : : : , r and t ¼ n þ 1 2 r, : : : , n 2 (6 þ m2 þ p), it contains (1 2 B)3.

The latter provides a transition to the (1 2 B)6 contained by the symmetric seasonal filter,

which applies for t ¼ r þ 1, : : : , n 2 r. Such a transition does not occur for model-based

filters nor for X-11 filters with full forecast extension. In both of these cases, all the

asymmetric filters contain the same unit root factors.

For the original X-11 asymmetric trend and irregular filters, we need to extend the first

two ranges of time points in Table 4 by p months. Thus, for t ¼ 1, : : : ,6 þ m2 þ 2p and

for t ¼ n þ 1 2 (6 þ m2 þ 2p), : : : , n, asymmetric vX11
T ðBÞ reproduces and asymmetric

vX11
I ðBÞ annihilates only constant polynomials. For t ¼ 7 þ m2 þ 2p, : : : , r þ p and

for t ¼ n þ 1 2 (r þ p), : : : , n 2 (6 þ m2 þ 2p), asymmetric vX11
T ðBÞ reproduces

and asymmetric vX11
I ðBÞ annihilates polynomials up to degree 2. For t ¼ r þ p þ 1,

: : : , n 2 (r þ p), the symmetric filters apply, and symmetric vX11
T ðBÞ reproduces and

symmetric vX11
I ðBÞ annihilates polynomials up to degree 3 (Table 2).

For quarterly series we change 6 to 2 and 7 to 3 in the ranges of time points in

Table 4. At the beginning of the series, the first two time point ranges for the quarterly

trend and irregular asymmetric filters are then t ¼ 1,: : : 2 þ m2 þ 2p and

t ¼ 3 þ m2 þ 2p, : : : , r þ p. At the end of the series the corresponding

time point ranges are t ¼ n þ 1 2 (2 þ m2 þ 2p), : : : , n and t ¼ n þ 1 2 (r þ p),

: : : , n 2 (2 þ m2 þ 2p). The range where the symmetric quarterly trend and

irregular filters apply is still t ¼ r þ p þ 1, : : : , n 2 (r þ p).

The presence of just the single 1 2 B factor in vX11
S ðBÞ and vX11

I ðBÞ applied near the

ends of series means that these filters will under-difference the series unless the

appropriate model for the data has just d ¼ 1. For the more common case where

the model assumes d ¼ 2, this fact precludes some calculations one might wish to carry

out with original X-11 concurrent filters. Consider, for example, the concurrent seasonal

adjustment error, which is Nn 2 vX11
N ðBÞyn ¼ vX11

S ðBÞNn 2 vX11
N ðBÞSn. This error is

nonstationary if d ¼ 2, since the concurrent vX11
S ðBÞ contains only one difference. Hence,

given a model for yt with d ¼ 2, the MSE of a seasonal adjustment using an original X-11

concurrent filter cannot be calculated. For this reason, Bell et al. (2012) made seasonal

adjustment MSE calculations, and Bell and Kramer (1999) developed an approach to

computing X-11 seasonal adjustment variances, only for X-11 filters with full forecast

extension.

When X-11 is applied to a time series partially extended with forecasts and backcasts,

that is, with fewer than r forecasts and backcasts (the number required for application

of the symmetric seasonal and seasonal adjustment filters to the extended series), we can

infer the unit root properties of the resulting implied asymmetric filters from the results

given above, including Table 4 and the theorems of Section 2. Assume that the forecasting

model is of the form of (3), that is, that the differencing in the model is

dðBÞ ¼ ð12 BÞd21ð12 B12Þ ¼ ð12 BÞdUðBÞ. We first consider d ¼ 1. In this case,

from Theorem 1, the forecast extension will reproduce constants and from Table 4, the

version of vX11
N ðBÞ used will reproduce constants at every time point t. It then follows

that X-11 seasonal adjustment with the extended series will also reproduce constants. As

forecast extension with d ¼ 1 will reproduce only constants, not polynomials of higher
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degree, for t # r and t . n 2 r X-11 seasonal adjustment with the forecast extended

series will reproduce only constants.

Consider now the case of d ¼ 2 and assume one year of both forecast and backcast

extension. (One year forecast extension, but no backcast extension, is the default choice in

X-11-ARIMA and X-12-ARIMA.) For simplicity, we will consider what happens at the

beginning of the time series. Parallel results hold at the end. Theorem 1 of Section 2 says

that, for d ¼ 2, forecast and backcast extension will reproduce linear functions of time, but

not polynomials of higher degree. With the one-year backcast extension, the seasonal

filters that apply at t ¼ 1, 2,: : : are the asymmetric versions ofvX11
S ðBÞ that would actually

apply at t ¼ 13, 14,: : : without backcast extension. The results of Table 4 then provide the

differencing factors in the asymmetric seasonal filters, but with the time point ranges (at

the beginning of the series) shifted by subtracting 12. We thus see the following. (i ) For

t ¼ 1, : : : ,m2 þ p 2 6, asymmetric vX11
S ðBÞ contains 1 2 B, so that seasonal adjustment

for these time points reproduces only constants. (ii ) For t ¼ m2 þ p 2 5, : : : , r 2 12,

asymmetric vX11
S ðBÞ contains (1 2 B)3, which annihilates quadratics, but since forecasting

only reproduces linear functions, seasonal adjustment for these time points reproduces

only linear functions. (iii ) For t ¼ r 2 11, : : : , r, the symmetric version of vX11
S ðBÞ is

applied to the extended series. While it contains (1 2 B)6, again the limiting factor is the

forecast and backcast extension, so seasonal adjustment for these time points still

reproduces only linear functions. Note the corresponding result in Table 3 for the case of

d ¼ 2. (iv) For t ¼ r þ 1, : : : , n 2 r, the symmetric seasonal and seasonal adjustment

filters apply using only observed data (no forecast or backcast extension needed), and

seasonal adjustment reproduces polynomials up to degree 5.

Similar reasoning can be used to infer properties of the X-11 trend and irregular filters

when applied with limited forecast and backcast extension, as well as to infer unit root

properties of X-11 filters when applied to series extended with more or fewer forecasts and

backcasts. We could also obtain results for values of d . 2, but as noted earlier such

results would be of little practical relevance.

Finally, it should be noted that the effective half-length of an X-11 symmetric seasonal

filter is, in practical terms, much less than the r ¼ 18 þ m1 þ m2 þ p on which the results

given here are based. This is because the X-11 filter weights are quite small beyond a

certain point much less than r. From plots given in Bell and Monsell (1992) of X-11

symmetric filter weights (covering filters generated from the 3 £ 1, 3 £ 3, default 3 £ 5,

and 3 £ 9 seasonal MAs, and the 9-, 13-, and 23-term Henderson trend MAs), one might

judge that the effective half-length of an X-11 symmetric seasonal filter is about m2,

or perhaps, to be safe, m2 þ s (with s ¼ 12 for monthly, and s ¼ 4 for quarterly series).

Thus, while the asymmetric X-11 seasonal filters exactly include (1 2 B)6 only for

t ¼ r þ 1, : : : , n 2 r, they may come close to doing so for t ¼ m2 þ 1, : : : ,n 2 m2, or

possibly for t ¼ m2 þ s þ 1, : : : , n 2 m2 2 s. Section 7 now illustrates this point.

7. Illustration

We now illustrate the results of Section 6 on reproduction of polynomials by original X-11

seasonal adjustment and trend filters. For simplicity, quarterly rather than monthly

seasonal adjustment was carried out. The input series to X-11 were polynomials of degrees
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1 through 5 covering 15 years plus one quarter, or 61 observations. These were of the form

yt ¼ 30 £ [(t 2 31)/30]k for t ¼ 1, : : : ,61 and k ¼ 1, : : : , 5. The series values thus

ranged from 230, : : : , 30 for odd powers, and from 30 down to 0 and then back up to 30

for even powers. This makes the average absolute quarter-to-quarter change equal to 1 in

all cases, so that errors in the seasonal adjustments and trend estimates––the differences

between these values and the input polynomial trends––generally reflect errors relative to

the average absolute quarter-to-quarter changes.

To keep the X-11 filters relatively short, we specified a 3 £ 3 seasonal MA and a 5-term

Henderson trend MA. For these MA choices, m1 ¼ m2 ¼ 2 £ 4 ¼ 8 and p ¼ 2, so

r ¼ 6 þ m1 þ m2 þ p ¼ 24 is the half-length of the X-11 symmetric seasonal adjustment

filter, which thus (Table 4) reproduces all the polynomials up to degree 5 for time points

25, : : : , 37( ¼ 61–24). From Table 4 (with the modifications noted for quarterly series),

the X-11 asymmetric seasonal adjustment filters will reproduce polynomials only up to

degree 2 at time points 3 þ m2 þ p ¼ 13, : : : , 24 ¼ r, and similarly at time points

38, : : : , 49. At time points 1, : : : ,12 and 50, : : : , 61, only constants are exactly

reproduced by the X-11 seasonal adjustment filters.

The half-length of our X-11 trend filter is r þ p ¼ 26, so it reproduces polynomials

up to degree 3 for time points 27, : : : , 35. It reproduces only constant, linear, and

quadratic polynomials at time points 15, : : : , 26 and 36, : : : , 47. At time points 1, : : : , 14

and 48, : : : , 61, the trend filters reproduce only constants.

Figure 1 displays the results. The seasonal adjustment errors are displayed in the left

column of plots for the input polynomials of degrees 1 to 5. The corresponding trend

estimation errors are displayed in the right column of plots. The dotted vertical lines in the

plots are the limits of the intervals over which the filters reproduce the respective

polynomials. No dotted vertical lines appear in the last two plots of the right column,

since for these cases none of the input polynomial values are reproduced. Though many of

the plotted points outside the region denoted by the dotted vertical lines appear to fall on

the horizontal axis, these values are not exactly zero, just too small for their differences

from zero to be visually detected on the plots.

For the linear polynomial plots in the first row, we see the magnitude of the errors in

both the seasonally adjusted values and trend estimates is quite small, even at the very ends

of the series. This shows that while the X-11 asymmetric filters exactly reproduce only

constants near the ends of the series, they come very close to reproducing linear

polynomials. As we look down the rows of plots, we notice that the magnitude of the errors

increases with the degree of the input polynomial, and, especially for the higher degrees,

the errors are not so trivial as they were for the linear polynomial. There is generally a

seasonal pattern to the errors and, apart from this, the magnitudes of the errors tend to be

larger nearer to the ends of the series. The larger errors near the ends of the series are also

due to the fact that, for polynomials of degree 2 and higher, the absolute rates of change

in the series used increase as one approaches either end of the series. Overall, the largest

errors occur for trend estimates at the first and last two time points.

The results in Figure 1 illustrate the point made at the end of Section 6 that the effective

half-lengths of the X-11 symmetric filters are considerably less than the exact half-lengths.

The plots in the left column suggest that vX11
N ðBÞ nearly reproduces polynomials up to

degree 5 except for the first and last 10 or so quarters, and vX11
T ðBÞ nearly reproduces
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polynomials up to degree 3 except for the first and last seven or so quarters. This contrasts

with the ranges over which the corresponding exact results hold, which exclude the first

and last 24 and 26 quarters, respectively. Asymmetric vX11
T ðBÞ also nearly reproduces

polynomials of degrees 4 and 5 apart from the first and last 2–3 years, although even the

symmetric version of vX11
T ðBÞ does not do so exactly.
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Fig. 1. Seasonal adjustment and trend estimation errors for X-11 quarterly filters with no forecast extension

applied to polynomials of degrees one through five. The X-11 filters use 3 £ 3 seasonal MAs and a 5-term

Henderson trend MA. The polynomials are of the form yt ¼ 30 £ [(t 2 31)/30] k for t ¼ 1, : : : , 61 and

k ¼ 1, : : : , 5. The errors are zero within the spans denoted by the dotted vertical lines.
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8. Seasonal Unit Root Properties of Filters

It is easy to summarize the results on the seasonal unit root properties of the filters

considered here. First, all seasonal adjustment filters considered––model-based and X-11,

symmetric and asymmetric––contain U(B), and so annihilate fixed seasonal effects. So do

the corresponding trend and irregular filters, while the corresponding seasonal filters all

reproduce fixed seasonal effects. Symmetric seasonal adjustment, trend, and irregular

filters contain additional seasonal unit root factors, specifically:

. symmetric, infinite model-based filters contain U(B)U(F),

. symmetric X-11 filters, both Wallis’s and Young’s versions (see Section 4), contain

U(B)(1 þ F), and

. symmetric, finite model-based filters also contain U(B)(1 þ F).

Derivation of these results except for the last follows in the same fashion as for the results

on 1 2 B factors given in Sections 3–6. For further details, see Bell (2010). The last result

follows since Findley and Martin (2006, p. 29) observe that any finite symmetric filter that

includes a 1 þ B factor must also include a 1 þ F factor. (A symmetric finite filter is a

symmetric filter used to produce estimates at t ¼ (n þ l)/2 for n odd.)

Seasonal adjustment filters that include U(B)U(F) annihilate not just fixed seasonal

effects, but any deterministic function jt such that U(B)U(B)jt ¼ 0. From results on

solutions to homogeneous difference equations (Goldberg 1986), such a jt can be shown to

be a seasonal pattern whose amplitude grows linearly over time. The models discussed in

Section 2 that are used for seasonal adjustment are not really aimed at modeling such

increasing amplitude seasonal effects since the models will not, for example, reproduce

such patterns in forecasting. The model-based symmetric signal extraction filters

reproduce or annihilate such effects simply because, from Equations (8)–(11), these

filters include U(B) and also (1 2 B)d as conjugate pairs, that is, as U(B)U(F) and

(1 2 B)d(1 2 F)d.

The inclusion of U(B)U(F) in model-based symmetric seasonal adjustment, trend, and

irregular filters implies that the spectra of the resulting N̂t, T̂t and Ît will have zeros at the

seasonal frequencies (2pj/12 for j ¼ 1, : : : , 6 for monthly series, p/2 and p for quarterly

series). This can be called “overadjustment,” a term that refers more generally to dips at

the seasonal frequencies (not necessarily to zero) in the spectra of N̂t, T̂t or Ît. Evidence

of overadjustment (from examination of estimated spectra of estimated components) has

long been considered as potentially indicative of problems with the seasonal adjustment.

See, for example, Granger (1978). Sims (1978) and Tukey (1978), however, in discussing

Granger’s article, both pointed out that this was an unrealistic criterion because such

“overadjustment” simply follows for model-based adjustment as a consequence of MMSE

prediction. In any case, any assessment of the spectral properties of the estimated

components from a model-based adjustment should take into account these results. In

doing this, note that estimated components from long but finite series will (approximately)

show properties of symmetric infinite filtering in the center of the series, but will show

properties of asymmetric infinite filtering nearer the ends, where there is no

overadjustment. The estimated spectra of N̂t, T̂t or Ît will then show a mixture of these

properties. This may produce dips, though not actual zeros, at the seasonal frequencies.
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The inclusion of only U(B)(1 þ F) by the X-11 symmetric seasonal adjustment, trend,

and irregular filters, rather than the full U(B)U(F), is a result that no model-based

symmetric infinite MMSE filter can produce. However, if one computes transfer functions

of the filters vX11
N ðBÞ=UðBÞ, where vX11

N ðBÞ is the X-11 symmetric seasonal adjustment

filter, one finds that these transfer functions very nearly reach 0 at all the seasonal

frequencies. (They are exactly 0 at the frequency p due to the symmetric vX11
N ðBÞ

containing the additional 1 þ F factor, whose zero is at F ¼ 21 ¼ eip.) This shows that

the X-11 symmetric seasonal adjustment filters, and thus the X-11 symmetric trend and

irregular filters as well, very nearly include U(B)U(F). This may be partly why Cleveland

and Tiao (1976), Burridge and Wallis (1984), and Planas and Depoutot (2002) were

successful at finding models whose symmetric infinite filters could well-approximate X-11

symmetric filters.

9. Discussion

We have presented here an essentially complete catalog of results on unit root factors

in commonly used seasonal, seasonal adjustment, trend, and irregular linear filters,

both model-based and from X-11 with or without forecast extension (full or partial).

The unit root factors of interest are differencing operators ((1 2 B)d for some d . 0)

and seasonal summation operators (U(B) ¼ 1 þ B þ : : : þ B 11 for monthly data,

U(B) ¼ 1 þ B þ B 2 þ B 3 for quarterly data), as these determine the extent to which the

various filters annihilate or reproduce (i ) polynomials in time and (ii ) fixed seasonal

effects. Differences between the results for various cases were noted. For example,

symmetric filters include more (higher order) unit root factors than do the corresponding

asymmetric filters.

It is difficult to draw any general conclusions about whether the differences that exist

in unit root factors between model-based and X-11 filters favor one or the other, or are

generally neutral. Such conclusions, when possible, would presumably depend on the

properties of the time series being seasonally adjusted. We can say, however, that while

the relation between unit root factors for model-based symmetric and asymmetric filters

stems from established statistical principles of MMSE linear projection, the relation

between unit root factors for X-11 symmetric and asymmetric filters (with or without

forecast extension) is ad hoc. This could raise concerns for some X-11 filters in certain

specific instances. On the other hand, results from the illustration of Section 7, such as

those showing that X-11 asymmetric seasonal adjustment and trend filters without forecast

extension come very close to reproducing linear polynomials, though they exactly

reproduce only constants, means we must be cautious in how we interpret the exact results.

This last remark also reminds us that the exact results presented should nonetheless hold

approximately in other settings where one filter well-approximates another. For example,

the results on unit roots of model-based symmetric filters strictly apply only to the case

of seasonal adjustment using a doubly infinite realization of a time series ({yt for

t ¼ 21, : : : ,1}), a situation never exactly realized in practice. However, model-based

filter weights from the models considered here die out with increasing lead or lag, so that

in the middle of a sufficiently long series the symmetric filters nearly apply, and then we

can expect the unit root results for symmetric filters to hold approximately. Similarly, the
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ends of X-11 symmetric filters contain a large number of very small (in magnitude)

weights, so that the effective length of the filters is considerably less than their exact

length, and the results on unit roots in X-11 symmetric filters will apply approximately

over much wider time intervals than those over which the results apply exactly. This can

be seen in the results of Section 7. Precisely how long a series needs to be in order to be

considered “sufficiently long” for the filters being applied at specific time points to be

regarded as approximately symmetric, or how many forecasts are really needed to

approximate “full forecast extension,” will depend on the particular fitted models and

filters being used, so this must be judged on a case-by-case basis.
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