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The Lloyd–Moulton price index has been advocated as a timely approximation to a
superlative price index. We show that a weighted average of the arithmetic and geometric
base-weighted (Laspeyres) indexes can serve as a simple, robust alternative to the
Lloyd–Moulton. The parameter needed for the weighted average can be readily and
systematically estimated from past data and continuously updated as new data become
available. Previous methods of estimating this parameter have entailed either a trial-and-error
process, requiring human judgment, or the use of iterative numeric algorithms. An empirical
study indicates that we may compute timely, close approximations to a superlative index
using a weighted average of the arithmetic and geometric Laspeyres indexes with parameters
estimated and systematically updated from prior data.
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1. Introduction

A consumer price index (CPI) is a measure of change from one time period to another of

the purchasing power of a given population’s monetary unit. A cost of living index (COLI)

is the ratio of minimal costs needed in the two time periods to achieve a given standard of

living. A body of theory suggests that certain “superlative” index formulas give a good

approximation to a COLI (Diewert 1987). These formulas have been difficult to

implement, however, because they require information on consumer expenditure patterns

for both of the two reference periods; such information on the more recent period is usually

unavailable at the time of index production.

The desirability of a COLI is not universally accepted. On grounds of simplicity and

transparency, many countries prefer a market basket approach, often choosing the

Laspeyres-type index described below (U.S. National Research Council 2002, pp. 43–44).

Other approaches are discussed in the International Labour Office’s Consumer Price Index

Manual (2004). In this article however, we present a ready, simple estimation method for

applications in which a timely superlative price index is desired.

Shapiro and Wilcox (1997) advocated the Lloyd–Moulton price index (Lloyd 1975;

Moulton 1996) as a timely approximation to a superlative index. Instead of second
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period expenditure information, the Lloyd–Moulton relies on a parameter representing

“elasticity of substitution” and uses past years’ data as a basis for evaluating the parameter

estimate. The elasticity of substitution indicates the extent to which consumers change

their buying patterns in response to changes in relative prices. Higher elasticity values

indicate greater willingness, on the part of consumers, to substitute cheaper items for more

expensive ones. Balk (2000) provides numerical methods of estimating the elasticity

parameter.

An alternative approach to estimating a COLI, providing greater operational simplicity

and flexibility, is to compute a weighted average of the base-weighted arithmetic and

geometric (Laspeyres) indexes defined below. We show through Taylor series expansions

that the arithmetic-geometric average (or “AG Mean”) index closely approximates the

Lloyd–Moulton and hence the superlative indexes. The weight applied to the geometric

index in the AG Mean may be estimated from prior data through a simple formula and then

systematically updated with more recent consumer expenditure data. By contrast, Shapiro

and Wilcox (1997) used a trial-and-error method to approximate a parameter for the

Lloyd–Moulton index, and the parameter was then held constant throughout the time

period studied. Because of the systematic updating, the AG Mean continuously picks up

changes in consumer buying patterns reflected in the data. The systematic updating of the

AG Mean requires no iterative numerical procedures and can therefore be easily

programmed and automated in a statistical production setting. To illustrate the practicality

of this approach, we present findings from an empirical study.

2. Price Index Formulas and Estimators

The classic price index formula is the (arithmetic) Laspeyres index,

L ¼

XN

j¼1
q j1pj 2XN

j¼1
qj1pj1

¼
XN
j¼1

wj1

pj2

pj1

� �

where pjt denotes the price of item j at time t, qjt denotes the quantity of item j purchased at

time t, wjt ¼ pjtqjt=
PN

k¼1pktqkt, and N denotes the number of items in the target population.

The weight wjt is the expenditure share for item j in period t [ {1,2}; the ratios pj 2=p j1 are

referred to as price relatives. Grounded in the “fixed market basket” concept, L is the ratio

of the total costs, in the two reference periods, of the bundle of goods and services that

were purchased in Period 1. The Laspeyres is similar in principle to the Paasche index,

given by

P ¼

XN

j¼1
qj2pj2XN

j¼1
qj2pj1

¼
XN
j¼1

wj2 pj2=pj1
� �21

" #21

which is based on quantities for Period 2. Estimation of the Laspeyres index is more

practical, because estimates of the first period shares wj1 are more likely to be

available at Period 2 than are estimates of wj2, which are based on Period 2

expenditure share weights. On the basis of some postulated desirable properties of
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price indexes, Irving Fisher (1922) suggested that the ideal index would be F ¼
ffiffiffiffiffiffi
LP

p
,

which has come to be called the Fisher index.

Another formula that now plays an important role in the U.S. CPI is a geometric mean of

the price relatives,

G ¼ exp
XN
j¼1

wjln
pj2

pj1

� �( )
¼

YN
j¼1

pj2

pj1

� �wj

which is a generalization of the unweighted geometric mean known as the Jevons index,

after its originator. The weights wj in G might be fixed across time or be taken as the first or

second period shares defined above. When first period weights are used, the index G is

sometimes referred to as the geometric Laspeyres index. The Törnqvist index is a

geometric mean index with weights based on the arithmetic average of the expenditure

share weights across the two reference periods, i.e.,

T ¼
YN
j¼1

pj2

pj1

� �wj;1;2

where wj;1;2 ¼ ðwj1 þ wj2Þ=2. Both the Fisher and Törnqvist indexes are known as

superlative indexes, because economic theory suggests that, under relatively weak

assumptions, they approximate a COLI (Diewert 1987).

In practice, government agencies apply a given price index formula to a sample from the

target population, yielding an index estimator of the selected population index. In most

cases, neither estimated quantities nor expenditure share weights are available for either of

the price index reference Periods 1 and 2. Statistical agencies often use expenditure share

weights estimated for some earlier Period 0. Combining these weights with price data from

Periods 1 and 2, they may estimate a modified Laspeyres index or weighted geometric

mean index as

L̂0;1;2 ¼
Xn
j¼1

ŵj0

pj2

pj1

� �

or

Ĝ0;1;2 ¼
Yn
j¼1

pj2

pj1

� �ŵj 0

respectively, where n is the sample size and ŵj0 is an estimated expenditure share for item j

in Period 0. In what follows, we put aside this complication.

For sampling purposes, government agencies often categorize the population of

consumer items into groups defined by item characteristics and/or geographic areas and

draw a sample of items within each group. This categorization gives rise to “composite

forms” of price index formulas. For example, the Laspeyres index (with Period 1 weights)
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can be written as L ¼
g

P
wg1Lg, where

wgt ¼

XNg

i¼1
qgitpgitX

g

XNg

i¼1
qgitpgit

is the expenditure share for the gth group, and Lg is the Laspeyres sub-index for group g.

The computation of subindexes is called “lower-level aggregation,” while the process of

combining subindexes into an overall index, often by a different formula, is called “upper-

level aggregation.” In the empirical study we present in Section 4, we focus on an

application of the AG Mean at the upper level of aggregation.

3. The AG Mean Approximations to the Lloyd–Moulton

For general notation, we write I ¼ XY , where X and Y are the formulas used for upper- and

lower-level aggregation, respectively. A composite price index estimator Î ŵg; Îg
� �

combines subindexes Îg with expenditure weights ŵg, e.g., ŵg [ ŵg1; ŵg2

� �
, where ŵgt

denotes the estimated expenditure share at time t for a stratum g. Thus we have the base

(Period 1) weighted geometric mean index ĜÎ ¼
Q

g Î
ŵg1

g and the base-weighted Laspeyres

index L̂Î ¼
P

ŵg1 Îg.

The Lloyd–Moulton (or CES) index estimator is defined as

ĈÎ ¼
g

X
ŵg1Î

12t

g

( )1=ð12tÞ

and has been shown to target a population COLI, as approximated by a Törnqvist or Fisher

index. The parameter t is called the “elasticity of substitution.” Note that ĈÎ ! ĜÎ as

t! 1. (Although the elasticity parameter is often denoted by s, we use t here, because s

will be used for a different purpose below.)

We may approximate ĈÎ by a weighted arithmetic or geometric average of the

base-weighted geometric mean Ĝ Î

� �
and Laspeyres indexes, with t as the weight assigned

to ĜÎ. Let

~CÎ;a ¼ tĜÎ þ ð1 2 tÞL̂Î

be the arithmetic AG Mean index.

To see that ~CÎ;a is an appropriate estimator of ĈÎ, we expand ĈÎ about a constant vector,

using a generalization of the approach suggested by Dalén (1992). (Other approaches to

the use of Taylor series expansions to compare price indexes differ slightly from Dalén’s

in both method and purpose; see, for example, Diewert 1987.) For notational simplicity, let

wg ¼ ŵg1, and let

ma ¼
g

X
wgÎg; s

2
a ¼

g

X
wg Îg 2 ma

� �2
; and ga ¼

g

X
wg Îg 2 ma

� �3
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When we approximate ĈÎ by a Taylor series expansion about the point Îg ¼ ma for all g,

and express the third-order expansion in terms of the above moments, we have

ĈÎ < ma 2
t s 2

a

2ma

þ
t ðtþ 1Þga

6m2
a

ð1Þ

(The relevant derivatives are given in the Appendix.) Note that ma ¼ L̂Î . Setting

t ¼ 1, we obtain the third-order expansion of the base-weighted Geometric mean

index ĜÎ ¼
Q

gÎ
wg

g :

ĜÎ < ma 2
s 2
a

2ma

þ
ga

3m2
a

ð2Þ

So from (1), we have, to third order,

ĈÎ;a < ma 2
ts 2

a

2ma

þ
tga

3m2
a

so

~CÎ;a 2 ĈÎ <
t ð1 2 tÞga

6m2
a

With t [ ½0; 1�,

t ð1 2 tÞga

6m2
a

#
ga

24m2
a

so the difference ~CÎ;a 2 ĈÎ should be small provided ga is reasonably small. As the

empirical results in the next section illustrate, this third order difference is often

negligible.

When ~CÎ;a is used to approximate the Fisher index F̂Î, the appropriate weight of ĜÎ in

the average is simply

uF;a ¼
L̂Î 2 F̂Î

L̂Î 2 ĜÎ

ð3Þ

obtained by setting ~CÎ;a equal to F̂Î with t ¼ uF;a and solving for uF;a. Similarly, uT ;a ¼

L̂Î 2 T̂Î
� �

= L̂Î 2 ĜÎ

� �
is appropriate when the estimation target is a Törnqvist index. Note

that uF,a and uT,a rely on the index estimates F̂Î and T̂Î, respectively. Because the elasticity

of substitution does not normally change rapidly over time, however, we can use the index

estimates calculated from prior data to obtain current values of uF,a and uT,a. These

parameter estimates can then be continuously and systematically updated. The closed

algebraic forms of uF,a and uT,a are convenient for analysis purposes and can be easily

programmed, e.g., as part of a data processing system used for scheduled production

computations.

We also consider a geometric AG Mean, ~CÎ;j ¼ Ĝ
t

Î L̂
12t

Î , which can also be used as an

alternative to the Lloyd–Moulton. Törnqvist (1936, quoted by Vartia 1978) provides the
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following third-order expansion of log ĈÎ

� �
:

log ĈÎ

� �
< mj þ

ð1 2 tÞs 2
j

2
þ

ð1 2 tÞ2gj

6
ð4Þ

where

mj ¼
g

X
wglog Îg

� �
; s 2

j ¼
g

X
wg log Îg

� �
2 mj

� 	2

and

gj ¼
g

X
wg log Îg

� �
2 mj

� 	3

Setting t ¼ 0 in (4), we have

log L̂Î
� �

< mj þ
s 2
j

2
þ

gj

6

So we may write

t log ĜÎ

� �
þ ð1 2 tÞlog L̂Î

� �
< mj þ

ð1 2 tÞs 2
j

2
þ

ð1 2 tÞgj

6
ð5Þ

(since log ĜÎ

� �
¼ mj). From (4) and (5), we have, to third-order

log ~CÎ;j


 �
2 log ĈÎ

� �
<

t ð1 2 tÞgj

6
#

gj

24
ð6Þ

when t [ ½0; 1�. Thus ~CÎ;j should also serve as a good approximation to ĈÎ. To estimate

the parameter t for ~CÎ;j, we may use

uT ;j ¼ log L̂Î
� �

2 log T̂Î
� �� 	

log L̂Î
� �

2 log ĜÎ

� �� 	21

or

uF;j ¼ log L̂Î
� �

2 log F̂Î

� �� 	
log L̂Î

� �
2 log ĜÎ

� �� 	21

which are analogous to (3) above.

Using our estimates of t from (3) or (6), we could calculate a Lloyd–Moulton index, ĈÎ,

but ~CÎ;a and ~CÎ;j are computationally simpler. In the case t ¼ 1, all three are equivalent to

ĜÎ, but ĈÎ cannot be directly computed. For very large values of t (approaching infinity),
~CÎ;a and ~CÎ;j may not be good approximations, but very large values of t are unlikely to be

appropriate for consumer price indexes.

4. Empirical Results

To test the usefulness of the AG Mean, we performed an empirical study using airfare data

from the Passenger Origin and Destination (O&D) Survey, a quarterly survey conducted

by the U.S. Bureau of Transportation Statistics (BTS). Our data comprised unit value

subindexes Îg (average price in time t divided by average price in time t 2 1) for detailed

categories of airline itineraries, along with corresponding expenditure share weights wg.
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Both the Îgand the wg were computed from the O&D survey data, at the most detailed level

of aggregation allowed by the data. Each group g comprises itineraries flown during the

reference quarter on the same sequence of carriers with identical trip routes. The dates and

flight times for the itineraries may differ within a group g, but the trip route, sequence of

class of service categories (e.g., coach, first class), and sequence of air carriers are the

same for all itineraries within a group. (For details on the survey and the estimation

method, see Lent and Dorfman 2005. BTS is now publishing the Air Travel Price Index

series, computed by this method, as a quarterly research series.) We computed superlative

index estimates using the formula F̂Î. We then estimated elasticity parameters based on

Formula (3) above and applied the AG Mean approximations. Our results illustrate the use

of the AG Mean, with systematic parameter updates, in the case of chained index series.

The figures below show comparisons between the quarterly chained Fisher, Laspeyres,

and arithmetic AG Mean index series for the period between the 4th quarter of 1998 and

the 3rd quarter of 2003. In this application, the differences between the Laspeyres and

Fisher index series are, to some extent, due to chain drift in the Laspeyres series (see Lent

2003). We computed the AG Mean indexes, ~CÎ;a, using two different estimators of the

elasticity parameter uF,a both based on four-quarter moving average estimates of

parameters computed from previous quarters. The unsmoothed quarterly parameter

estimates are given in Table 1. The series labeled “AG Mean 1” was computed assuming a

one-quarter lag between the availability of price data and expenditure share weights, while

“AG Mean 2” was computed assuming a two-quarter lag. We use lagged data, even though

contemporary expenditure estimates are available for the airline data, because, typically in

Table 1. Unsmoothed quarterly elasticity estimates uF,a

Quarter New York Denver Manchester San Juan

1998 Q2 0.023 0.079 0.066 0.275
1998 Q3 0.026 0.084 0.055 0.151
1998 Q4 20.008 0.099 0.024 0.200
1999 Q1 0.134 0.116 0.221 0.147
1999 Q2 0.026 0.079 0.149 0.297
1999 Q3 0.057 0.064 20.013 0.261
1999 Q4 0.038 0.049 0.039 0.137
2000 Q1 0.184 0.112 0.196 0.105
2000 Q2 0.004 0.086 0.104 0.178
2000 Q3 0.015 0.035 20.002 0.114
2000 Q4 0.009 0.046 0.008 0.162
2001 Q1 0.112 0.054 0.106 0.029
2001 Q2 0.091 0.125 0.155 0.069
2001 Q3 0.082 0.065 0.088 0.090
2001 Q4 20.006 0.081 0.037 0.204
2002 Q1 0.138 0.164 0.114 0.221
2002 Q2 0.039 0.155 0.079 0.298
2002 Q3 0.110 0.065 0.005 0.250
2002 Q4 0.055 0.112 0.084 0.260
2003 Q1 0.173 0.230 0.114 0.085
2003 Q2 0.086 0.160 0.082 0.061
2003 Q3 0.049 0.047 20.020 0.051
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practice, only lagged expenditure data are available. For k [ {1,2}, the elasticity

parameter for AG Mean k is

�u
ðmkÞ
F;a;t ¼

Xt2k

l¼t2k23
uF;a;l

4

where uF,a,l is the parameter estimate computed using data from quarters l 2 1 and l, and
�u
ðmkÞ
F;a;t is the moving average parameter used in the AG Mean index measuring change

between quarters t 2 1 and t. The parameters uF,a,l measure the elasticity of substitution

between itineraries with different destinations as well as between itineraries with flights

operated by different air carriers. The parameters generally run between 0 and 0.10,

indicating little substitution between itinerary destinations.

Figure 1 shows the four index series for itineraries originating in New York City or

Newark (John F. Kennedy, LaGuardia, or Newark Liberty International Airport). We see

very little difference between AG Mean 1 and AG Mean 2, indicating only very gradual

change in the moving average elasticities over the five-year period. The AG Mean series

do rise very slightly above the Fisher during the later quarters of the series, due to the

cumulative effect of a gradual rise in the uF,a,l elasticity estimates. These parameters

increase from roughly 0.05 to 0.09 during this period, which was marked by the expansion

of “low-cost” air carriers and increased competition in the air travel service market. In

spite of the low elasticities and the gradual change in the elasticity estimates over the

period, both of the AG Mean series provide much better approximations to the Fisher

index than does the Laspeyres.

Figures 2 and 3 provide results for itineraries originating in Denver, Colorado and

Manchester, New Hampshire (a much smaller market), respectively. In general, the

Denver and Manchester series are similar to those for the New York City area. Beginning

in 2002, with the expansion of low-cost carrier service from the Denver airport, the

elasticity parameter for the Denver AG Mean series increases, causing the AG Mean

indexes to run slightly above the Fisher, though well below the Laspeyres. For itineraries

originating in Manchester, both of the AG Mean series closely approximate the Fisher.

The AG Mean series for the San Juan market, shown in Figure 4, run slightly below the

Fisher, due to decreases in the elasticity parameters, which were not seen in the data for

any of several U.S. cities examined. The elasticities for San Juan were initially higher than

Fig. 1. Alternative airfare indexes for New York, New York and Newark, New Jersey 99Q4 ¼ 100
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those for the U.S. cities, however, generally running between 0.06 and 0.20 over the test

period. In this case also, both of the AG Mean series dramatically outperform the

Laspeyres by correcting–albeit with a lag–for the elasticity of substitution between air

travel itineraries and carriers.

5. Conclusion

The weighted arithmetic or geometric of the base-weighted Geometric mean and

Laspeyres indexes, with simple, continuously updated estimates of elasticity based on

lagged data, provides a good on-time approximation to a superlative index. Like the

Fig. 2. Alternative airfare indexes for Denver, Colorado 99Q4 ¼ 100

Fig. 3. Alternative airfare indexes for Manchester, New Hampshire 99Q4 ¼ 100

Fig. 4. Alternative airfare indexes San Juan, Puerto Rico 99Q4 ¼ 100
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Lloyd–Moulton index, the AG Mean relies on a parameter that is intuitively meaningful

and useful in its own right.

Other methods of using data from prior time periods to approximate a superlative index,

e.g., calculating a simple ratio adjustment factor of the Fisher to the Laspeyres index, lack

this property. Unlike the Lloyd–Moulton parameter, however, the AG Mean parameter

has a closed algebraic form. It can therefore be more easily analyzed, and its update

computations can be readily automated for use in large-scale data processing and

statistical production systems.

Appendix

To derive expression (1), we expand the function ĈÎ around the point

Î ¼ m ¼ ðm; : : : ;mÞ, where m ¼ ma. The general formula for the Taylor expansion is

f Î
� �

¼ f m
� �

þ
X

f 0g m
� �

Îg 2 m
� �

þ
1

2

XX
f 00g1;g2 m

� �
Îg1 2 m
� �

Îg2 2 m
� �

þ
1

6

XXX
f 000g1;g2;g3 m

� �
Îg1 2 m
� �

Îg2 2 m
� �

Îg3 2 m
� �

The necessary derivatives of ĈÎ, evaluated at Î ¼ m are as follows.

›ĈÎ

›Îg

�����
Î¼m

¼ wg

›2ĈÎ

›Î
2

g

������
Î¼m

¼ m21twgðwg 2 1Þ

›2ĈÎ

›Îg1›Îg 2

�����
Î¼m

¼ m21twg1wg2

›3ĈÎ

›Î
3

g

������
Î¼m

¼ m22 t ð1 2 2tÞw3
g 2 3t2w2

g þ t ðtþ 1Þwg

h i

›3ĈÎ

›Î2
g1Îg2

�����
Î¼m

¼ m22t ð1 2 2tÞw2
g1wg2 þ twg1wg2

h i

›3ĈÎ

›Îg1Îg2Îg3

�����
Î¼m

¼ m22t ð1 2 2tÞwg1wg2wg3
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