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To limit disclosure risks, one approach is to release partially synthetic public use microdata
sets. These comprise the units originally surveyed, but some collected values, for example
sensitive values at high risk of disclosure or values of key identifiers, are replaced with
multiple imputations. This article presents and evaluates the use of classification and
regression trees to generate partially synthetic data. Two potential applications of CART are
studied via simulation: (i) generate synthetic data for sensitive variables; and, (ii) generate
synthetic data for variables that are key identifiers.

Key words: CART; confidentiality; disclosure; multiple imputation; synthetic data; trees.

1. Introduction

When releasing public use microdata, statistical agencies employ a variety of techniques

to limit disclosures, including recoding variables, swapping data, and adding noise to

values (Willenborg and de Waal 2001). Unfortunately, these techniques can distort

relationships among variables in the data set and complicate estimation for the user, for

example requiring nonstandard, likelihood-based analyses (Little 1993) or measurement

error models (Fuller 1993). These are unfamiliar to many users, who are comfortable with

and therefore likely to use standard statistical techniques and software.

An alternative approach with the potential to circumnavigate these problems is to

release multiply-imputed, fully synthetic public use microdata, as proposed by Rubin

(1993). In this approach, the agency (i) randomly and independently samples units from

the sampling frame to comprise each synthetic data set, (ii) imputes unknown data values

for units in the synthetic samples using models fit with the original survey data, and (iii)

releases multiple versions of these synthetic datasets to the public. This limits disclosure

risk, since identification of units and their sensitive data can be difficult when the released

data are not actual, collected values. And, with appropriate imputation and estimation

methods developed by Raghunathan et al. (2003) and Reiter (2005b) – based on the

concepts of multiple imputation (Rubin 1987) – the approach allows data users to obtain

valid inferences using standard statistical methods and software. For discussions of

synthetic approaches, see Fienberg et al. (1996; 1998), Dandekar (2002a; b), and Reiter

(2002; 2005a).
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Although there are potentially great benefits to releasing fully synthetic data

(Raghunathan et al. 2003; Reiter 2005a), generating plausible synthetic data for all

variables may be difficult in practice. Instead, agencies can release multiply-imputed,

partially synthetic data sets comprising a mix of actual and imputed values, as

suggested by Little (1993). For example, agencies seeking to prevent identifications of

certain records can simulate values of key variables – like age, race, sex, and marital

status – for those records, but leave all other values unchanged. Agencies seeking to

protect certain records’ values of sensitive variables, like income or disease status, can

replace those values with imputed values. The nature of the partial synthesis depends

on the degree of confidentiality protection and level of data utility deemed acceptable

by the agency.

Partial synthesis maintains many of the potential benefits of full synthesis – limiting

disclosure risk while allowing users to obtain valid inferences using standard statistical

software and methods – with decreased sensitivity to the specification of the imputation

models, since only some values are imputed. Hence, inferences from partially synthetic

data are generally less affected by artifacts of inaccurate imputation models than those

from fully synthetic data. However, partially synthetic data carry greater disclosure

risk than fully synthetic data, because the original units and some genuine values are

released.

Several agencies and statistical researchers have adopted partially synthetic approaches

to protecting public use data. In the Survey of Consumer Finances, the U.S. Federal

Reserve Board replaces monetary values at high disclosure risk with multiple imputations,

then releases these imputed values and the unreplaced, collected values (Kennickell 1997).

The U.S. Bureau of the Census has adopted a partially synthetic approach to protect data in

longitudinal, linked data sets (Abowd and Woodcock 2001). They replace all values of

some sensitive variables with multiple imputations, but leave other variables at their actual

values. A third example is the SMIKe algorithm of Liu and Little (2002), which simulates

multiple values of key identifiers for selected units.

Even when simulating only a few variables, specification of imputation models can be

daunting in surveys with hundreds of variables, some with distributions not easily modeled

with standard parametric tools. It may therefore be advantageous to use nonparametric

methods to generate imputations.

This article presents and evaluates a nonparametric approach for generating partially

synthetic data: the use of classification and regression trees, typically abbreviated as

CART (Breiman et al. 1984). The article is organized as follows. Section 2 reviews the

notation and methods of inference for partially synthetic data developed by Reiter (2003).

Section 3 reviews CART and suggests how it might be used for generating synthetic data.

Section 4 presents results of simulation studies that use CART (i) to simulate selected

units’ values of potentially sensitive variables, and (ii) to simulate selected units’ values of

variables that are key identifiers. The simulations illustrate the types of disclosure risks

and level of data utility that can be expected when using CART models to generate

partially synthetic data. Section 5 concludes with a general discussion of partially

synthetic data approaches.
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2. Description of Partially Synthetic Data

To describe partially synthetic data, we use the notation of Reiter (2003). Let Ij ¼ 1 if unit

j is selected in the original survey, and Ij ¼ 0 otherwise. Let I ¼ ðI1; : : : ; INÞ. Let Yobs be

the n £ p matrix of collected (real) survey data for the units with Ij ¼ 1; let Ynobs be the

ðN 2 nÞ £ p matrix of unobserved survey data for the units with Ij ¼ 0; and, let

Y ¼ ðYobs; YnobsÞ. For simplicity, we assume that all sampled units fully respond to the

survey. Methods for handling simultaneously missing data and synthetic data are

described in Reiter (2004). Let X be the N x d matrix of design variables for all N units in

the population, e.g., stratum or cluster indicators or size measures. We assume that such

design information is known approximately for all population units. It may come, for

example, from census records or the sampling frame(s).

The agency releasing synthetic data, henceforth abbreviated as the imputer,

constructs synthetic data sets based on the observed data, D ¼ ðX; Yobs; IÞ, in a two-

part process. First, the imputer selects the values from the observed data that will be

replaced with imputations. Second, the imputer imputes new values to replace those

selected values. Let Zj ¼ 1 if unit j is selected to have any of its observed data

replaced with synthetic values, and let Zj ¼ 0 for those units with all data left

unchanged. Let Z ¼ ðZ1; : : : ; ZnÞ. Let Yrep,i be all the imputed (replaced) values in the

ith synthetic data set, and let Ynrep be all unchanged (unreplaced) values of Yobs. The

values in Ynrep are the same in all synthetic data sets. Each synthetic data set, di, then

comprises (X,Yrep,i,Ynrep,I,Z). Imputations are made independently for i ¼ 1; : : : ;m

times to yield m different synthetic data sets. These synthetic data sets are released to

the public.

To protect confidentiality it may be necessary to simulate values of the design variables

X. If so, these values are considered part of Yrep,i. To keep notation simple, we assume that

no values of X are simulated.

The values in Z can and frequently will depend on the values in D. For example, the

imputer may choose to simulate sensitive variables or identifiers only for units in the

sample with unusual combinations of identifiers; or, the imputer may replace only those

incomes above $100,000 with imputed values. To avoid bias, imputers should account for

such selections by imputing from the distribution of Y for those units with Zj ¼ 1. In

practice, this can be done by using only the units with Zj ¼ 1 as the data when finding the

distributions for imputations. Using all units with Ij ¼ 1 can result in biased estimates or

wider confidence intervals with overly conservative coverage rates, as illustrated in the

simulations of Reiter (2003).

When using parametric imputation models, the Yrep,i should be generated from the

Bayesian posterior predictive distribution of ðYrep;ijD; ZÞ. In this article, we generate

theYrep,i from a series of CART models fit using the units with Zj ¼ 1. This approach is

described in Section 3.2.

Inferences about some scalar estimand, say Q, are obtained by combining results from

the di. Specifically, suppose the data analyst estimates Q with some point estimator q and

estimates the variance of q with some estimator v. For i ¼ 1; : : : ;m; let qi and vi be

respectively the values of q and v in synthetic data set di. It is assumed that the analyst

determines the qi and vi as if di was in fact collected data from a random sample of (X, Y)

Reiter: Using CART to Generate Partially Synthetic Public Use Microdata 443



based on the actual survey design used to generate I. The following quantities are needed

for inferences for scalar Q:

�qm ¼
Xm
i¼1

qi=m ð1Þ

bm ¼
Xm
i¼1

ðqi 2 �qmÞ
2=ðm2 1Þ ð2Þ

�vm ¼
Xm
i¼1

vi=m ð3Þ

The analyst then can use �qm to estimate Q and

Tp ¼ bm=mþ �vm ð4Þ

to estimate the variance of �qm. When n is large, inferences for scalar Q can be based on

t-distributions with degrees of freedom y p ¼ ðm2 1Þð1þ r21
m Þ2, where rm ¼ ðm21bm=�vmÞ.

In many cases, a normal distribution provides an adequate approximation to the

t-distribution because rm is small. Derivations of these methods are presented in Reiter

(2003). Extensions for multivariate Q are presented in Reiter (2005b).

3. CART Models for Generating Partially Synthetic Data

In this section, we propose the use of CART models to generate the Yrep,i. We first provide

some background on CART and existing proposals for using CART models to impute

missing data.

3.1. Background on CART

CART models (Breiman et al. 1984) are a flexible tool for estimating the conditional

distribution of a univariate outcome given multivariate predictors. Essentially, the CART

model partitions the predictor space so that subsets of units formed by the partitions have

relatively homogeneous outcomes (Chipman et al. 1998). The partitions are found by

recursive binary splits of the predictors. The series of splits can be effectively represented

by a tree structure, with leaves corresponding to the subsets of units. An example of a tree

structure for a univariate outcome Y and two predictors, X1 and X2, is presented in Figure 1.

Units with X1 $ 2 fall in the leaf labeled L1, regardless of their value of X2. Units with

X1 , 2 and X2 $ 0 fall in the leaf labeled L2, and units with X1 , 2 and X2 , 0 fall in the

leaf labeled L3. Such trees can be grown using algorithms like the one in the software

package S-Plus (Clark and Pregibon 1992).

A common strategy for finding trees is to fit one with a large number of leaves, and then

prune the tree according to some optimality or complexity criteria. For example, if the tree in

Figure 1 is deemed too large or too complex, the branch to the leaves L2 and L3 can be cut, so

that the resulting tree has only two leaves, L1 and what was formerly the root of L2 and L3.

Many pruning criteria remove leaves that do not add much to the explanatory power of the

tree. For example, the branch for L2 and L3 might be cut if the distribution of Y in L2 is very

similar to the distribution of Y in L3. Pruning unimportant leaves of a tree is analogous to
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removing unimportant variables from standard regressionmodels, and hence can reduce the

variances of out-of-sample predictions. Of course, pruning important branches can

introduce substantial bias, just like removing important predictors in standard regression.

As a method of estimating conditional distributions, CART models have some potential

advantages over parametric models. First, CART modeling may be more easily applied

than parametric modeling, particularly for data with irregular distributions. Second, CART

models can capture nonlinear relationships and interaction effects that may not be easily

revealed in the process of fitting parametric models. Third, CART provides a semi-

automatic way to fit the most important relationships in the data, which can be a substantial

advantage when there are many potential predictors. Primary disadvantages of CART

models relative to parametric models include difficulty of interpretation, discontinuity at

partition boundaries, and decreased effectiveness when relationships are accurately

described by parametric models (Friedman 1991).

Because of their nonparametric nature, CART models have been proposed to impute

missing data (Barcena and Tussel 2000; Piela and Laaksonen 2001; Conversano and

Siciliano 2002). These proposals primarily use the leaves of trees as imputation classes,

assuming the data are missing at random (Rubin 1976). As an example, suppose a single

variable Y has data missing at random. A tree is grown using the observed outcomes, Yobs,

and all other variables as predictors, then pruned to some desired size. Units with missing

Y are placed in appropriate leaves of the tree according to their predictor values, and

imputed values of Y are then drawn randomly from the Yobs in the corresponding leaves.

It is less straightforward to implement the CART approach when data are missing for

multiple variables. Imputations from single-variable trees can fail to reflect relationships

among the imputed variables. For example, imputation of missing Ya and missing Yb from

trees approximating f ðYajXÞ and f ðYbjXÞ assumes, possibly incorrectly, conditional

independence between Ya and Yb. One approach is to impute from chains of single-variable

Root

L1

L3L2

X1 < 2

X2 < 0

 

Fig. 1. Example of a tree structure
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trees conditional on previous imputations (Conversano and Siciliano 2002). For example,

first impute missing values of Ya using its single-variable tree fit on X, then impute missing

values of Yb using its single-variable tree fit on X and the filled in Ya, then impute missing

values of Yc after filling in missing values of Ya and Yb, etc. Such conditional approaches

are related to the sequential imputation algorithms of van Buuren and Oudshoorn (1999)

and Raghunathan et al. (2001) for parametric modeling. To this author’s knowledge, there

have been no evaluations published of the repeated-sampling properties of inferences from

multiply-imputed data sets generated from such chained CART models. A related

approach to multivariate CART imputation has been used by the Euredit project (results

available at http://www.cs.york.ac.uk/euredit).

Single variable trees can be employed for missing multivariate categorical data. All

levels of the rmissing categorical variables are combined into one variable with K ¼
Qr

i ni
levels, where ni is the number of levels for categorical variable i (Barcena and Tussel

2000). This can be computationally infeasible for large K.

With any of these approaches, and regardless of the number of variables with missing

data, a key issue is how to prune the tree. Pruning the tree too much may result in

nonhomogeneous imputation donors, so that the imputations are not drawn from plausible

conditional distributions; essentially, the imputation classes are too broad. Insufficiently

pruning the tree may lead to over-fitting the observed data, resulting possibly in inferences

with larger variances. Given the usual advice for multiple imputation of accepting

variance to avoid bias (Rubin 1987), it may be preferable to use larger trees for imputation

of missing data.

3.2. Generation of Yrep,i from CART models

We now turn to considering CART models for generating partially synthetic data sets,

di ¼ ðX; Yrep;i; Ynrep; I; ZÞ, using values of the observed data, D ¼ ðX; Yobs; IÞ. The

proposed CART algorithm for imputing Yrep,i is laid out in Section 3.2.1, and motivation

for its specification is presented in Section 3.2.2.

3.2.1. Algorithm for imputations

Let Y(1) be the variable in Y that has the largest number of values to be replaced, and let Y(k)
be the variable in Y that has the kth largest number of values to be replaced. Let ZðkÞ ¼ 1

for all units having Y(k) replaced. For each Y(k), we fit the tree of Y(k) on (X,Y2(k)), where

Y2(k) is all variables in Y except Y(k), using the values in D. Label these trees TREE(k).

Whenever practical, only units with ZðkÞ ¼ 1 are used to grow TREE(k). For example, when

ZðkÞ ¼ 1 only for units with Y ðkÞ . 100; 000, the imputation model should be fit using only

those units in D with Y ðkÞ . 100; 000.

When two or more variables have the same number of values to be replaced, the order of

the variables is selected as follows. First, just to avoid introducing additional notation,

assume the variables are assigned a random ordering. The TREE(k) are fit for each of these

variables. Let P(k) be the depth in TREE(k) of the first split on one of these other variables.

If none of these other variables appear in TREE(k), define PðkÞ ¼ 1. Now, reorder the

variables in decreasing order of the P(k) to obtain the order of imputations. Figure 2

illustrates this procedure for two variables, Ya and Yb. Because Yb appears higher up in

TREE(a) than Ya appears in TREE(b), the PðbÞ . PðaÞ, and we impute Yb before Ya.
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At its largest, each TREE(k) can have exactly one leaf for every unit with ZðkÞ ¼ 1.

Imputing data by sampling from leaves of maximal trees results in di ¼ D for all i, which

obviously fails to protect confidentiality if D is not releasable. The maximal trees must be

pruned so as to preserve as far as possible the relationships in D, while limiting disclosure

risks. For continuous Y(k), one approach is pruning until the observed values in all leaves

have variance larger than some imputer-defined threshold, thereby ensuring that

replacement values are imputed from distributions with some minimum variance. For

categorical Y(k), trees can be pruned so that no one value of Y(k) appears in any leaf more

than an imputer-specified percentage of the time. Another approach is to require a

minimum number of units, say ten, in each leaf of the tree. It is also possible to use pruning

criteria based on formal measures of disclosure risk, for example pruning until

probabilities of identification, or mean squared errors of imputed values, for the records

with Zj ¼ 1 are deemed sufficiently small.

Once trees are pruned to satisfy disclosure criteria, imputations are generated

sequentially using the pruned trees, beginning with Y(1). Let L1w be the wth leaf in the

pruned TREE(1), and let YL1w
ð1Þ be the nL1w values of Y(1) in leaf L1w. In each L1w in the tree,

we generate a new set of values by drawing from YL1w
ð1Þ using the Bayesian bootstrap (Rubin

1981, and described in Section 3.2.2). When it is safe to release real values of Y(1), these

sampled values are the replacement imputations, Y(1)rep,i, for the nL1w units that belong to

L1w. When it is not safe to release real values of Y(1), we take an additional step. In each

leaf, we estimate a density by fitting a Gaussian kernel density estimator (Wegman 1972)

to the bootstrapped values. Then, for each unit, we sample randomly from the estimated

density in that unit’s leaf. The support of the estimated density stretches from the smallest

to the largest value of YL1w
ð1Þ . The sampled values are the Y(1)rep,i.

Imputations are next made for Y(2) using the same procedure. To maintain consistency

with the Y(1)rep,i, units’ leaves in TREE(2) are located using Y(1)rep,i in place of Y(1).

Occasionally, some units may have combinations of (X,Y2(1,2),Ynrep,Y(1)rep,i), that do not

belong to one of the leaves of TREE(2). For these units, we search up the tree until we find a

node that contains the combination, and treat that node as if it were the unit’s leaf. Once

Yb
Ya

Yb < 5

Ya < 1

P(b) = 2

P(a) = 1

 

Fig. 2. Example of ordering of imputations when two variables have equal numbers of replaced values. Here,

Yb is imputed before Ya
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each unit’s leaf is located, values of Y(2)rep,i are generated using the Bayesian bootstrap,

and the kernel density procedure is used to impute Y(1). Imputing any Y(k) follows the same

process: we place each unit in the leaves of TREE(k) based on their values in

(X,Y2(1,2, : : : ,k 2 1),Ynrep,Y(1,2, : : : ,k21)rep,i), and impute using the Bayesian bootstrap and

kernel density procedure.

Each released, partially synthetic data set di ¼ ðX; Ynrep; Yrep;i; I; ZÞ. The process is

repeated independently m times, and these m data sets are released to the public.

3.2.2. Motivation for algorithm

When fitting each TREE(k), only units with ZðkÞ ¼ 1 are used to grow the tree. This helps

ensure the estimated conditional distributions for the Y(k) are in the space of Y(k) where data

need to be replaced. For example, when replacing incomes above $100,000 only, all

imputed incomes must be at least $100,000 if inferences for the population mean income

are to be potentially valid. Using trees grown from observed data that include units with

incomes below $100,000 may result in imputed incomes below $100,000, which may lead

to biased estimates. As another example, when replacing some outcome only for certain

subpopulations (e.g., replace incomes for single native American males), the imputations

should be drawn from that subpopulation’s outcome distribution. A tree grown using units

outside the subpopulation may not accurately capture the outcome distribution in the

subpopulation. As a result, the imputations for the subpopulation would not be consistent

with the corresponding distribution of outcomes in the observed data.

It may be necessary for practical reasons or disclosure limitation purposes to use units

with ZðkÞ ¼ 0 when growing some TREE(k). There may be insufficient number of units with

ZðkÞ ¼ 1 to fit an accurate tree model from only those units. Or, the values of Y(k) for the

units with ZðkÞ ¼ 1 may not be sufficiently varied, so that disclosure criteria for pruning the

trees cannot be satisfied.

Imputations are made from sequential CART models. The TREE(k) estimate

f ðY ðkÞjX; Y2ðkÞ; ZðkÞÞ. All Y2(k) are predictors so that as much information as possible is

used for imputations, which helps to maintain consistency in relationships. For example,

suppose there are two strongly related variables to be replaced, Y(a) and Y(b), and Y(a) has

many more values to be replaced than does Y(b). Including Y(b) as a predictor when fitting

TREE(a), and vice versa, appropriately results in imputations that reflect dependencies

between Y(a) and Y(b) (assuming TREE(a) splits on Y(b) and TREE(b) splits on Y(a)). On the

other hand, fitting TREE(a) without including Y(b), or vice versa, inappropriately produces

imputations that reflect conditional independence of Y(a) and Y(b).

Variables are ordered for sequential imputation by the number of values to be replaced,

going from largest to smallest. This helps preserve relationships for variables with smaller

numbers of values to be replaced. To illustrate, consider two variables, Y(a) and Y(b), where

a , b, and ZðaÞ ¼ 1 for all units with ZðbÞ ¼ 1. Suppose Y(a) is a strong predictor of Y(b) for

the units with ZðbÞ ¼ 1, so that TREE(b) contains splits on Y(a). Further, suppose that there

are many units with ZðaÞ ¼ 1 and ZðbÞ ¼ 0, and that Y(b) is not a strong predictor of Y(a) for

these units. The TREE(a), dominated by the units with ZðaÞ ¼ 1 and ZðbÞ ¼ 0, may not

contain splits on Y(b). If so, when Y(b) is imputed before Y(a), the imputations for units with

ZðbÞ ¼ 1 will reflect conditional independence between Y(a) and Y(b) implied in TREE(a).

On the other hand, imputing Y(a) before Y(b) avoids this problem.
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When two or more variables have equal values of Z(k), the trees are fit in decreasing

order of P(k), as illustrated in Figure 2. This aims to impute the variables in decreasing

order of dependency on each other, which helps preserve the strongest relationships

among the Y(k) in the imputations. To illustrate, consider the example in Figure 2, in which

Y(b) appears in TREE(a) before Y(a) appears in TREE(b), so that b , a. The trees indicate

that Y(b) is a stronger predictor of Y(a) than Y(a) is of Y(b). Setting b , a passes this

relationship on to the imputations, whereas setting a , b results in imputations that reflect

a weaker relationship between Y(a) and Y(b) than those implied by the trees. When two or

more variables have equal values of Z(k) and P(k), imputers can permute the orderings to

determine which reproduces the joint distribution of the replaced values most closely.

Different sequencing and tree specification methods may be effective in

certain partially synthetic settings. For example, suppose the imputer simulates

all values of three key variables for certain records. Then, f ðYa; Yb; YcjrestÞ ¼

f ðYajrestÞ f ðYbjYa; restÞf ðYcjYa; Yb; restÞ. The imputer can approximate draws from

this distribution by drawing from three univariate trees that approximate the three

conditional distributions. Research is needed to compare this specification with the

specification used here.

A Bayesian bootstrap (Rubin 1981) is employed in each leaf as part of the imputation

process. Let Y L be the nL values of the dependent variable in leaf L. The Bayesian

bootstrap in leaf L proceeds as follows:

1. Draw ðnL 2 1Þ uniform random numbers. Sort these numbers in ascending order.

Label these ordered numbers as a0 ¼ 0; a1; a2; : : : ; anL21; anL ¼ 1.

2. Draw nL uniform random numbers, u1; u2; : : : ; uj; : : : ; unL . For each of these u,

impute YL
j when aj21 , u # aj.

The Bayesian bootstrap draws values of Y from the leaf L, but it differs from the standard

bootstrap. In Step 1, the resampling probabilities for each YL
j are randomly drawn; they do

not all equal 1/nL. Varying the selection probabilities accounts for the additional

uncertainty in the conditional distributions in each leaf due to having small samples of

values in each leaf. Sampling values from Y L directly, i.e., the standard bootstrap, does not

incorporate this uncertainty. Justification for the Bayesian bootstrap over the standard one

can be found in Rubin (1987, Chapter 4).

For some data, we take the additional step of drawing values from an estimated density,

fit using the bootstrapped values and a kernel density estimator. As stated previously, the

primary reason for drawing from the density estimator rather than releasing the bootstrapped

values is to avoid releasing real data values. The support of the density in each leaf Lkw
stretches from the largest to the smallest value of Y(k) in that leaf. If the range of values in any

leaf is too narrow to protect confidentiality, the range can be extended beyond the range of

values Y(k) in the leaf. Such extensions can compromise data utility if they result in many

implausible imputations. To ensure the density can be reasonably estimated, the bootstrapped

values within any Lkw cannot be all identical; they are redrawn if this is the case.

It is extremely difficult to prove analytically that sequential CART models are proper in

the sense of Rubin (1987, Chapter 4). Indeed, it is difficult to prove that even simple

regression imputation models are proper in complex samples (Binder and Sun 1996).

The performance of imputation methods is therefore best evaluated in real data settings:
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does the method provide inferences with reasonable frequentist properties? To assess this

crucial question, it is helpful to simulate applications of the approach.

4. Simulation studies

This section illustrates the performance of these sequential CART models using genuine

data. All CART models are fit in S-Plus using the algorithm of Clark and Pregibon (1992).

The first set of simulations mimics replacing sensitive variables, and the second set mimics

replacing key identifiers. Both simulations are based on a subset of public release data

from the March 2000 U.S. Current Population Survey. The data comprise ten variables

measured on 51,016 heads of households. The variables, displayed in Table 1, were

selected and provided by statisticians at the U.S. Census Bureau. Similar data are used by

Reiter (2005a) to illustrate and evaluate releasing fully synthetic data.

Marginally, there are ample numbers of people in each sex, race, marital status, and

education category. Many cross-classifications have few or zero people, especially those

involving minorities. There are negative incomes in the data: some households actually

report paying out more money than they took in over the year. The distributions of positive

values for all monetary variables are right-skewed.

4.1. Simulating sensitive variables

Imputers may decide to replace selected units’ values of sensitive variables with multiple

imputations, then release the imputed and unreplaced values. This may not reduce the risks

of reidentifications, but it can limit the risks of attribute disclosures. We mimic this

strategy by considering S, I, C, and A to be sensitive, replacing S for all people with S . 0,

I for all people with I . 100; 000, C for all people with C . 0, and A for all people with

A . 0. Other values are not replaced and are released in all di.

Each observed dataset, D, comprises n ¼ 10; 000 randomly sampled households from

the 51,106 households. The notes in Table 1 indicate the percentages of values of S, I, C,

and A typically replaced in any D. Approximately 37.3% of the households have at least

one value replaced, and about 1.5% have two or more values replaced. There are m ¼ 5

synthetic data sets generated for each D. Each di is generated using the CART models

outlined in Section 3, with sequential order of imputation S-I-C-A. The trees for each

variable are grown using only the units satisfying the conditions for that variable, e.g., the

trees for C are fit using only the roughly 3.3% of households with C . 0. Trees are pruned

so that each leaf has a minimum of ten values with at least two distinct values in each leaf.

Requiring two distinct values per leaf ensures that the same value is not forced to be

always imputed for units within that leaf.

Table 2 and Table 3 summarize the results of 1,000 runs of the simulation for a variety of

estimands. Inferences are made using the methods of Section 2. For all estimands, the finite

population correction factor is used when determining the variances v. Reported statistics

include the population values Q, the averages of the �q5 across the 1,000 simulations, and

the percentages of observed data 95% confidence intervals (qobs ^ 1:96
ffiffiffiffiffiffiffiffi
vobs

p
) and

synthetic data 95% confidence intervals that cover their corresponding Q.

For most estimands, the averages of the synthetic point estimates are close to their

corresponding Q. The median ratio of the mean squared error for �q5 over the mean squared
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Table 1. Description of variables used in the empirical studies

Variable Label Range Notes

Sex X male, female
Race R white, black, Amer. Indian, Asian
Marital status M 7 categories
Highest attained education level E 16 categories
Age (years) G 15 – 90 integers
Household alimony payments ($) A 0 – 54,008 0.4% have A . 0
Child support payments ($) C 0 – 23,917 3.3% have C . 0
Social security payments ($) S 0 – 50,000 23.6% have S . 0
Household property taxes ($) P 0 – 99,997 64.8% have P . 0
Household income ($) I 221,011 – 768,742 11.7% have I . 100; 000

R
eiter:

U
sin

g
C
A
R
T
to

G
en
era

te
P
a
rtia

lly
S
yn
th
etic

P
u
b
lic

U
se

M
icro

d
a
ta

4
5
1



error for qobs equals 1.06, indicating that most synthetic and observed point estimators

yield similar estimates. The coverages of synthetic 95% confidence intervals are

reasonably close to the coverages for the corresponding observed data intervals, with the

exception of the coefficient of sex in the regression involving
ffiffiffiffi
C

p
. This results because the

tree for C rarely splits on sex. This forces a conditional independence between C and X in

the imputation of positive C, which is reflected in the near-zero coefficient of X in Table 2.

The ratio of mean squared errors for this coefficient is a very large 5.64, again reflecting

the bias due to the implied conditional independence.

To assess attribute disclosure risks for each Y(k), we assume the intruder would estimate

unit j’s outcome Y(k),j by averaging the unit’s replaced values, �YðkÞ;j ¼ S
m
i¼1Y ðkÞrep;ij. We

then calculate the root mean squared error (RMSE) and relative root mean squared error

(RelRMSE) of this estimator for each unit:

RMSEðkÞ;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY ðkÞ;j 2 �YðkÞ;jÞ

2 þ
Xm
i¼1

ðY ðkÞrep;ij 2 �YðkÞ;jÞ
2=ððm2 1ÞmÞ

s
ð5Þ

RelRMSEðkÞ;j ¼ RMSEðkÞ;j=Y ðkÞ;j ð6Þ

Table 2. Simulation results when imputing sensitive variables: Simple estimands and a multiple regression

involving child support payments

95% CI Coverage

Estimand Q Avg. �q5 Observed Synthetic

Average income 52,632 52,893 96.4 92.6
Average social security 2,229 2,225 94.9 94.8
Average child support 139 137 93.9 92.6
Average alimony 41 42 92.5 92.4
% of households with income

. 200; 000
2.10 2.10 95.3 95.9

% of households with social
security . 10; 000

10.53 10.25 96.5 85.4

Coefficient in regression of A on:
Intercept 4,315 6,087 89.6 88.6
Income .14 .08 67.7 73.8

Coefficient in regression of A on:
Intercept 9,846 10,046 92.2 92.9
Child support .078 .065 97.2 96.4

Coefficient in regression of S on:
Intercept 2,999 3,017 93.7 92.0
Income 2 .015 2 .015 93.0 91.0

Coefficient in regression of
ffiffiffiffi
C

p
on:

Intercept 293.28 264.91 94.7 79.8
Indicator for sex ¼ female 13.30 1.57 96.0 38.1
Indicator for race ¼ black 29.69 26.49 96.9 93.4
Education 3.37 3.01 95.2 89.8
Number of youths in house 2.95 1.69 93.1 82.5

Population means and percentages calculated using all records. See Table 1 for percentages of imputed values.

Alimony regressions fit using records with A . 0. 100% of these records have imputed A.

Social security regression fit using all records. 33% of these records have imputed S or I.
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Table 3. Simulation results when imputing sensitive variables: Multiple regressions involving incomes and social security payments

95% CI Coverage

Estimand Q Avg. �q5 Observed Synthetic

Coefficient in regression of
ffiffiffi
S

p
on:

Intercept 79.87 82.97 93.7 84.6
Indicator for sex ¼ female 213.30 212.94 94.2 89.5
Indicator for race ¼ black 25.85 24.68 95.5 84.7
Indicator for race ¼ American Indian 27.00 25.01 94.3 96.7
Indicator for race ¼ Asian 23.27 22.11 90.2 96.2
Indicator for marital status ¼ married in armed forces 2.08 20.71 92.6 84.2
Indicator for marital status ¼ widowed 7.30 6.47 95.2 88.4
Indicator for marital status ¼ divorced 20.88 21.12 95.1 91.3
Indicator for marital status ¼ separated 25.44 24.67 96.6 97.0
Indicator for marital status ¼ single 21.54 21.05 93.9 91.2
Indicator for education ¼ high school 5.49 5.60 95.3 92.3
Indicator for education ¼ some college 6.77 7.13 96.3 93.9
Indicator for education ¼ college degree 8.28 9.10 93.7 88.3
Indicator for education ¼ advanced degree 10.67 11.90 89.2 90.6
Age 0.21 0.17 94.1 85.1

Coefficient in regression of log(I) on
Intercept 4.92 4.90 92.9 93.2
Indicator for race ¼ black 20.17 20.17 94.5 94.4
Indicator for race ¼ American Indian 20.25 20.25 89.5 89.0
Indicator for race ¼ Asian 20.0064 20.010 92.5 92.8
Indicator for sex ¼ female 0.0035 20.0011 96.9 96.4
Indicator for marital status ¼ married in armed forces 20.52 20.52 94.5 95.5
Indicator for marital status ¼ widowed 20.31 20.30 96.5 96.6
Indicator for marital status ¼ divorced 20.31 20.30 94.1 93.8
Indicator for marital status ¼ separated 20.52 20.52 88.8 89.0
Indicator for marital status ¼ single 20.32 20.31 92.7 92.7
Education 0.11 0.11 93.0 92.9
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Table 3. Continued

95% CI Coverage

Estimand Q Avg. �q5 Observed Synthetic

Indicator for household size . 1 0.50 0.50 93.0 93.2
Interaction for females married in armed forces 20.52 20.52 92.5 92.4
Interaction for widowed females 20.31 20.30 95.6 95.8
Interaction for divorced females 20.31 20.30 94.6 94.5
Interaction for separated females 20.52 20.52 91.1 91.0
Interaction for single females 20.32 20.31 90.8 91.0
Age 0.044 0.044 93.1 93.2
Age2 20.00044 20.00044 93.4 93.3
Property tax 0.000037 0.000040 52.3 53.1

Social security regression fit using records with S . 0 and G . 54. 100% of these records have imputed S.
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For any data set, the distributions of the RMSE(k),j and RelRMSE(k),j across all units with

replaced values can be examined to ensure sufficient variability in the imputations. Table 4

displays averages across the 1,000 simulation runs of various summaries of the

distributions of these quantities. Median RelMSEs are typically around 24% or more,

suggesting imputations for most units have a wide range of uncertainty. When imputers

require larger errors, stricter disclosure criteria can be used to prune the trees.

4.2. Simulating key identifiers

Imputers may decide to replace selected units’ values of key identifiers with multiple

imputations. This approach aims to reduce the risks of reidentifications. We mimic it by

considering G, M, X, and R to be key identifiers, and replace their values for the

households in the union of households with S . 0, A . 0, C . 0, or I . 100; 000. Other

values are not replaced and are released in all di. Typically, about 37.3% of sampled

households have G, M, X, and R replaced.

As before, each D comprises n ¼ 10; 000 randomly sampled households, and there

are m ¼ 5 synthetic data sets generated for each D. The sequential order of imputation is

G-M-X-R, which is decreasing in the P(k). Each tree is grown using the union of households

with S . 0, A . 0, C . 0, or I . 100; 000. The trees are pruned to have a minimum of ten

observations in each leaf. It is assumed that observed data values ofG,M, X, and R are safe

to release, so that imputations are drawn using only the Bayesian bootstrap in each leaf.

Table 5 summarizes the results of 1,000 runs of the simulation for estimands like those

in Table 3. A few of the indicator variables from Table 3 are collapsed to speed up the

simulations. Inferences for the averages of S, I, C, and A are not reported because they are

identical to the observed data inferences. Instead, the table reports the average education

level of married black females, about 1.1% of the population.

For most estimands, the averages of the synthetic point estimates are close to their

corresponding Q. The median ratio of the mean squared error for �q5 over the mean squared

error for qobs equals 1.10, indicating that most synthetic and observed point estimators

yield similar estimates. The maximum ratio is 2.71, belonging to the coefficient of age in

the regression for
ffiffiffi
S

p
. The coverages of the synthetic and observed data 95% confidence

intervals are reasonably similar. The synthetic and observed intervals differ most for the

Table 4. Attribute disclosure limitation in simulation of imputing

sensitive variables

Variable Min. 1st Quartile Median

RMSE
S 168 1,365 2,194
I 2,078 18,832 34,336
C 190 1,038 1,806
A 931 2,833 5,201
RelRMSE
S .02 .15 .24
I .02 .14 .24
C .08 .34 .55
A .16 .39 .62
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Table 5. Simulation results when imputing key variables

95% CI Coverage

Estimand Q Avg. �q5 Observed Synthetic

Avg. education for married black females 39.44 39.46 94.4 94.1
Coefficient in regression of

ffiffiffiffi
C

p
on:

Intercept 293.28 288.11 94.5 93.8
Indicator for sex ¼ female 13.30 7.46 96.2 81.3
Indicator for race ¼ black 29.69 25.26 94.3 88.2
Education 3.37 3.38 94.2 94.5
Number of youths in house 2.95 2.67 93.9 93.6
Coefficient in regression of

ffiffiffi
S

p
on:

Intercept 79.50 83.79 94.6 81.3
Indicator for sex ¼ female 213.34 212.94 93.8 91.3
Indicator for race ¼ black 26.04 26.12 94.5 94.2
Indicator for race ¼ American Indian 27.12 24.48 94.7 95.0
Indicator for race ¼ Asian 23.22 22.19 89.3 94.7
Indicator for marital status ¼ widowed 7.37 7.20 94.5 94.2
Indicator for marital status ¼ divorced 20.79 20.96 93.7 96.4
Indicator for marital status ¼ single 21.46 0.18 93.8 92.3
Indicator for education ¼ high school 5.51 5.53 94.8 95.8
Indicator for education ¼ some college 6.78 6.77 94.5 94.8
Indicator for education ¼ college degree 8.31 8.12 92.7 92.4
Indicator for education ¼ advanced degree 10.72 10.99 89.1 90.6
Age 0.22 0.16 93.8 80.6
Coefficient in regression of log(I) on:
Intercept 4.92 4.95 91.2 90.2
Indicator for race ¼ black 20.17 20.17 94.9 94.3
Indicator for race ¼ American Indian 20.25 20.25 88.6 91.0
Indicator for race ¼ Asian 20.0064 20.0045 92.5 92.0
Indicator for sex ¼ female 0.0035 20.0018 96.2 95.5
Indicator for marital status ¼ married in armed forces 20.028 20.091 94.9 90.4
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Table 5. Continued

95% CI Coverage

Estimand Q Avg. �q5 Observed Synthetic

Indicator for marital status ¼ widowed 20.015 20.057 96.6 89.4
Indicator for marital status ¼ divorced 20.16 20.16 93.5 93.9
Indicator for marital status ¼ separated 20.24 20.23 87.3 88.5
Indicator for marital status ¼ single 20.17 20.17 93.3 94.1
Education 0.11 0.11 93.0 92.2
Indicator for household size . 1 0.50 0.50 93.5 92.1
Interaction for females married in armed forces 20.52 20.43 92.2 88.9
Interaction for widowed females 20.31 20.27 96.8 90.0
Interaction for divorced females 20.31 20.30 92.8 93.1
Interaction for separated females 20.52 20.48 89.0 89.1
Interaction for single females 20.32 20.31 92.2 92.7
Age 0.044 0.043 94.1 91.3
Age2 20.00044 20.00043 94.4 92.8
Property tax 0.000037 0.000040 51.8 51.8

Average education calculated using all black females. 29.2% of these records have imputed G, M, X, and R.

Child support regression fit using records with C . 0. 100% of these have imputed G, M, X, and R.

Social security regression fit using records with S . 0 and G . 54. 100% of these have imputed G, M, X, and R.
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aforementioned coefficient of age and the coefficient of sex in the regression for
ffiffiffiffi
C

p
.

These differences result because the CART models inadequately capture these

relationships.

To assess reidentification risks when releasing these partially synthetic data sets, we

assume the intruder follows a simple strategy for guessing true values of the simulated key

identifiers. For marital status, sex, and race, the intruder uses the most frequently occurring

value among that unit’s imputations. When all five of a unit’s imputations are unique, the

intruder picks one at random. Using this strategy, typically an intruder matches exactly the

marital status, sex, and race in 54% of the units with replaced data. For age, we consider

two intruder strategies: (i) use the most frequently occurring value among the unit’s

imputed ages, and (ii) use the average of the unit’s imputed ages. Using the first strategy,

typically 3.0% of the intruder’s guesses match exactly on all four key identifiers. Using the

second strategy, typically 2.7% of the guesses match on all four key identifiers. With either

strategy, about 12.5% of the guesses have, simultaneously, exact matches on marital

status, sex, and race, and ages within two years of the age in the observed data. Clearly,

simulating age accounts for most of the disclosure protection.

CART imputations for key identifiers can be especially sensitive to the pruning criteria.

Requiring leaves not to have more than 90% of any one value typically results in pruned

sex and race trees with just a handful of splits, producing conditional independences in the

imputations. Using the 90% criterion to generate synthetic data, four of the synthetic 95%

confidence intervals have less than 1% coverage, and five have between 1% and 50%

coverage. The gains in disclosure protection are not large: 2.2% of units match on all four

characteristics as compared to 2.6%, and 46% match on all characteristics but age as

compared to 54%. These reductions in disclosure risk are not worth the large sacrifices in

utility.

5. Concluding remarks

The simulations in this article suggest that CART models are a promising approach for

generating partially synthetic data sets. Most synthetic confidence intervals in the

simulation have coverage properties like those of the corresponding real-data intervals,

even for regression models that have 100% imputed dependent variables. The approach

can be used to limit attribute or identification disclosures, or even both simultaneously,

depending on the variables synthesized. The degree of confidentiality protection can be

assessed by modeling intruder behavior and attempting attribute or identification

disclosures. When the partially synthetic data are found not to provide sufficient

protection, imputers can prune branches off the trees used to generate synthetic data.

One notable exception to the overall reasonableness of the synthetic data inferences is

the coefficient of sex in Table 2. It is attenuated to zero because the tree for child support

payments typically fails to split on sex. These conditional independences are most likely to

occur when trees are built from only a small number of units. Imputers may not want to use

CART models in such cases, opting instead for parametric imputation models.

Imputers should provide information that helps users decide what inferences can be

supported by the synthetic data. For example, imputers can include the imputation models

as attachments to public releases of data. When using CART models, this could raise

Journal of Official Statistics458



confidentiality risks if the branching points are sensitive. Alternatively, imputers can

include generic statements that describe the imputation models, such as “The tree for child

support payments is built from 40 records with positive payment values. It splits on age

and income only.” Analysts who desire finer detail than afforded by the imputations may

have to apply for special access to the observed data.

As argued by Reiter (2005a), releasing or describing the imputation models is

necessary, but it is not sufficient: imputers also should release synthetic data generated

from the models. Some analysts are not able to generate synthetic data given the models;

they need imputers to do it for them. Even when analysts can do so, it is a cumbersome

burden to place on them. Additionally, when analysts want to compare competing

analyses, it is advantageous if these analyses are performed on the same data sets, thereby

eliminating simulation variance from comparisons. Finally, analysts may desire some

function of the synthetic data that is hard to estimate from the model parameters, but easy

to determine from the synthetic data.

CART models can produce implausible imputations if built carelessly. For example,

suppose imputers replace both a detailed race code and an indicator for whether or not the

person is a minority. Imputing both separately might produce a nonminority race with a

minority indicator. To avoid such inconsistencies, imputers should simulate the most

detailed variables before creating any derived variables from the imputed values. Imputers

can check manually for inconsistent data before releasing the synthetic data and, as an

overall check on the accuracy of the imputation models, can compare the distributions of

the synthetic data to those of the observed data being replaced. If the synthetic

distributions are too dissimilar from the observed ones, the imputation models should be

altered.

Synthetic data methods, or any other disclosure limitation method, cannot be guaranteed

to reproduce closely the results for all analyses of the observed data. Nonetheless,

synthetic data can serve effectively for wide classes of simple analyses, as illustrated by

the simulations in this article. Synthetic data also could play the role of training data: users

build their models based on the publicly available, synthetic data, and submit requests to

the imputers for results based on the original data.

As with all disclosure limitation strategies, partially synthetic data do not eliminate the

risk of disclosures. Users can utilize the released, unaltered values to facilitate disclosure

attacks. Additionally, users may be able to estimate actual values of Y from the synthetic

data with reasonable accuracy. For example, if all people in a certain demographic group

have the same value of an outcome variable, the CART models likely will generate that

value for imputations. Imputers may need to prune the trees or otherwise coarsen the

imputations for these people. As another example, if users know that a certain record has

the largest value of some Y in the database, they can obtain a lower bound for Y by taking

the maximum value of the synthetic Y. Such outlying records are difficult to protect using

synthetic data approaches.

Is releasing partially synthetic data generated from CART models an effective approach

to disclosure limitation? This question cannot be fully answered from this article, although

the simulation results are encouraging. Within the partially synthetic data context,

research is needed to compare the merits of CART models with those of parametric

models. It also would be informative to investigate the use of Bayesian CART approaches
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(Denison et al. 1998a; Chipman et al. 1998; 2000) or multivariate adaptive regression

splines (Friedman 1991; Denison et al. 1998b) as imputation models. More broadly,

research is needed to compare synthetic data methods with standard disclosure limitation

methods. These comparisons should focus on measures of disclosure risks, obtained by

simulating intruder behavior, and on measures of data utility for estimands of interest to

users, including properties of point and interval estimates. Simulation studies in genuine,

realistically complex settings would provide valuable information for gauging the risk-

utility trade-offs for the various approaches to disclosure limitation.
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