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The jackknife technique is applied to a general class of estimators, under two-phase sampling,
for variance estimation. Considering a natural population, the performance of the weighted
jackknife variance estimator has been compared with other variance estimators, including the
unweighted jackknife variance estimator. A figure is included to clarify this comparison.

Key words: Auxiliary variable; generalized regression estimator; inclusion probability;
jackknife estimator.

1. Introduction

The concept of the jackknife was introduced by Quenouille (1956) in connection with

reduction of bias for nonlinear estimation. The possibility of using this technique for the

purpose of variance estimation was proposed by Tukey (1958). Durbin (1959) may have

been the first to use it in the context of finite populations. Rao (1965) and Rao and Webster

(1966) consider jackknifing the classical ratio estimator. Besides the ratio estimator, many

other estimators, which make use of auxiliary information are available in the literature.

Three of them that are worth mentioning are the generalized regression estimator (GREG)

due to Särndal (1980), the asymptotically design unbiased (ADU) estimator due to Brewer

(1979), and the generalized ratio estimator due to Hajék (1971). Wright (1983) and

Särndal and Wright (1984) brought all such estimators under one umbrella, called the QR-

class of estimators. Roy and Safiquzzaman (2000) considered a further generalized version

of the QR-class and jackknifed it to yield a fairly general jackknifed class of estimators. In

that paper, jackknifing was done with the dual objective of bias reduction and variance

estimation. Since the traditional jackknife procedure does not specifically adjust for the

imbalance in the sample caused by varying probabilities of selection, it fails to give

adequate protection to the variance estimator against selection of a sample that is highly

unrepresentative of the population. In addition, since the traditional jackknife variance

estimator, under unequal probability sampling, does not take into consideration the pair-

wise inclusion probabilities, the quality of its performance in yielding a nominal confidence

interval is diminished. This problem was alleviated by Roy and Safiquzzaman (2002) by
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introducing a weighted jackknife procedure that addresses the lack of balance caused

either by varying probabilities of selection or by varying sizes of the units being selected in

the sample.

Though the jackknife technique was used for inference in finite populations as early as

1959, its application to the case of two-phase sampling was not considered in the litera-

ture until Rao and Sitter (1995) examined the problem of estimation of the variance of

the two-phase ratio estimator by jackknifing. Taking cues from their work, Roy and

Safiquzzaman (2003) jackknifed a two-phase version of the QR-class of estimators and

faced the same kind of problem in obtaining protection against a bad sample, which they had

encountered earlier (2002) with the QR-class of estimators under single-phase sampling.

Also their jackknifed variance estimator did not involve the pair-wise inclusion

probabilities. To smooth out the imbalance in the sample caused by varying probabilities

of selection and to make the variance estimator dependent on pair-wise inclusion

probabilities, here we also have applied the weighted jackknife approach and have been able

to derive a better jackknife variance estimator of the two-phase version of the generalized

regression estimator (GREG). We compare the performance of this new jackknife variance

estimator with that of the traditional one and also with that of the variance estimator based on

the linearization technique. It is observed that the performance of the weighted jackknife

estimator is better than that of either of its rival estimators with respect to certain chosen

performance criteria. This will be demonstrated in tabular form at the end of this article.

Here the contents are divided into four parts. In Section 2, we introduce the two-phase

GREG. In Section 3, we address the problem of variance estimation and arrive at an

expression for a variance estimator using the linearization technique. Next we jackknife

the two-phase GREG following the weighted jackknife approach and give the expression

for both the weighted and the unweighted jackknife variance estimator. In Section 4, we

consider a natural population of Swedish municipalities named MU284 in the book by

Särndal, Swensson, and Wretman (1992), and compare the performance of the four

variance estimators introduced in Section 3.

2. Notation and Two-phase GREG

Let U be a finite population on which are defined two real variables x and y, taking values

xi ð. 0Þ and yi with totals X and Y, respectively. To estimate Y, a sample s of size n may be

taken with probability p(s). The design p may be assumed to admit positive inclusion

probabilities pi for unit i and pij for pairs of units ði; jÞ of U. By
P

U and
PP

U , let us

denote sums over i in U and i, j ði , jÞ in U, and by
P

S and
PP

S those in S, respectively.

Denote Q ¼ ðQ1;Q2; : : : ;QnÞ
0 as a vector of parameters to be determined in terms of the

design parameters and the auxiliary variables such that Qi . 0. The GREG estimator of

Särndal (1980) in the case of a single-phase sampling plan may be written as

tG ¼
X
S

yi

pi

þ B̂Q X 2
X
S

xi

pi

 !

where B̂Q ¼ ð
P

S QixiyiÞ=ð
P

S Qix
2
i Þ provided xi ð. 0Þ is known for every i [ U.

But when xi’s are not known for all the units of the population, this estimator is not

usable. Then to estimate the unknown X we may resort to two-phase sampling in which
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a sample, s1, of size n0 is first drawn from U with probability p1ðs1Þ, and then from s1 a

second phase sample, s2, of size n is drawn with conditional probability p2ðs2=s1Þ:

The overall two-phase sample, s ¼ ðs1; s2Þ, then has the selection probability

pðsÞ ¼ p1ðs1Þ p2ðs2=s1Þ. We may denote the class of all possible first-phase samples by

‘1, and that of all possible second-phase samples, for s1 held fixed, by ‘2ðs1Þ. For design

p2ðs2=s1Þ, with s1 held fixed, the inclusion probabilities

p2iðs1Þ ¼
s2]i

X
p2ðs2=s1Þ and p2ijðs1Þ ¼

s2]ði;jÞ

X
p2ðs2=s1Þ

are assumed to be positive. For fixed s1 with Qiðs1Þ . 0, the two-phase version of GREG

estimator may be written as

t 0G ¼
s2

X yi

p1ip2iðs1Þ
þ B 0

Qðs1Þ
s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !

where B 0
Qðs1Þ ¼

P
s2
Qiðs1Þxiyi

� � P
s2
Qiðs1Þx

2
i

� �
:

.
It is easy to note that with the choice Qiðs1Þ ¼ 1=ðxip1ip2iðs1ÞÞ, t

0
G reduces to the two-

phase generalized ratio estimator given by

t 0R ¼
s2

X yi

p1ip2iðs1Þ

 !
s1

X xi

p1i

s2

X xi

p1ip2iðs1Þ

2
664

3
775

The GREG estimator tG, introduced by Särndal (1980), was later derived by Deville and

Särndal (1992) with a suitable choice of the calibration weight. Following their line of

work, Roy and Safiquzzaman (2003) obtained a variant of the two-phase version of GREG

estimator t 0G using a two-step calibration technique. The second term in both tG and t 0G is

the contribution of calibration that adjusts for unfortunate sample selection.

3. Variance Estimation Under Two-phase Sampling

The main objective of the present article is the estimation of the variance of the two-

phase GREG estimator. This variance estimation problem was considered by Roy and

Safiquzzaman (2003), applying the linearization technique and the standard jackknife

technique. In that article it was shown that the performance of the standard jackknife

variance estimator was better than that of the linearized variance estimator for a test set

of data under two-phase sampling. However, for the reasons discussed in Section 1 and

to be further discussed in the latter part of this section, the standard jackknife technique

failed to give adequate protection against an unfortunate selection of an unequal

probability sample. So in the present section, following the line of research pursued by

Roy and Safiquzzaman (2002) in the case of single-phase sampling, the weighted

jackknife variance estimation procedure has been extended to a two-phase sampling

situation. In this section, we present a brief discussion of the linearized and the

standard jackknife estimators, in Subsections 3.1 and 3.2, respectively. These two

subsections have been drawn from an earlier work of Roy and Safiquzzaman (2002)
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to maintain continuity of discussion. The newest development in variance estimation by

the weighted jackknife method is discussed in Subsection 3.3. Thus, in this section, we

examine the problem of variance estimation by three different techniques, obtaining

three different variance estimators.

3.1. Linearization Variance Estimation

Using the ordinary Taylor’s series method, the approximate variance of t 0G may be derived

as follows.

Denoting eiðs1Þ ¼ yi 2 B 0
Qðs1Þxi, approximating B 0

Qðs1Þ by

b ¼ Ep1

s1

X
p2iðs1ÞQiðs1Þxiyi

s1

X
p2iðs1ÞQiðs1Þxi

2
664

3
775

and eiðs1Þ by Ei ¼ Ep1
½eiðs1Þ�, we can write

Varp1
E t 1

G=s1

� �
<
XX

U

D1ij

Ei

p1i

2
Ej

p1j

� �2

þb2
XX

U

D1ij

xi

p1i

2
xj

p1j

� �2

þ 2b
XX

U

D1ij

Ei

p1i

2
Ej

p1j

� �
xi

p1i

2
xj

p1j

� �

Also

Ep1Var t 1
G=s1

� �
<

s1[‘1

X
p1ðs1Þ

XX
s1

D2ijðs1Þ
eiðs1Þ

p1ip2iðs1Þ
2

ejðs1Þ

p1jp2jðs1Þ

� �2

where D1ij ¼ p1ip1j 2 p1ij and D2ijðs1Þ ¼ p2iðs1Þp2jðs1Þ2 p2ijðs1Þ:

So the linearized variance of t 0G may be written as

VLðt
0
GÞ ¼ Varp1

E t 1
G=s1

� �
þ Ep1

Var t 1
G=s1

� �
<
XX

U

D1ij

Ei

p1i

2
Ej

p1j

� �2

þ b2
XX

U

D1ij

xi

p1i

2
xj

p1j

� �2

þ2b
XX

U

D1ij

Ei

p1i

2
Ej

p1j

� �
xi

p1i

2
xj

p1j

� �

þ
s1[‘1

X
p1ðs1Þ

XX
s1

D2ijðs1Þ
eiðs1Þ

p1ip2iðs1Þ
2

ejðs1Þ

p1jp2jðs1Þ

� �2

Naturally an estimate of this variance may be taken as

vLðt
0
GÞ ¼

XX
s2

D1ij

p1ijp2ijðs1Þ

eiðs1Þ

p1i

2
ejðs1Þ

p1j

� �2

þB 0
Qðs1Þ

XX
s1

D1ij

p1ij

xi

p1i

2
xj

p1j

� �2

þ 2B 0
Qðs1Þ

XX
s2

D1ij

p1ijp2ijðs1Þ

eiðs1Þ

p1i

2
ejðs1Þ

p1j

� �
xi

p1i

2
xj

p1j

� �

þ
XX

s2

D2ijðs1Þ

p2ijðs1Þ

eiðs1Þ

p1ip2iðs1Þ
2

ejðs1Þ

p1jp2jðs1Þ

� �2
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3.1.1. Particular Case

With the choice Qiðs1Þ ¼ 1=ðxip1ip2iðs1ÞÞ; t
0
G reduces to the two-phase generalized ratio

estimator t 0R whose expression is given at the end of Section 2. This t 0R, in the equi-

probability situation, further reduces to the two-phase ratio estimator t 0R ¼ R̂�x 0; where

R̂ ¼ �y=�x and �x 0 ¼ ð1=n 0Þ
Pn 0

i¼1 xi. In this situation, ignoring the finite population

correction, the variance estimator of t 0R takes the form

vLðt
0
RÞ ø N 2 s2

e

n
þ R̂2 s

02
x

n 0
þ 2R̂

sex

n 0

" #

where s2
e ¼ 1=ðn 2 1Þ

P
s2
ðyi 2 R̂xiÞ

2; s 0
2

x ¼ 1=ðn 0 2 1Þ
P

s1
ðxi 2 �xÞ2 and sex ¼

1=ðn 2 1Þ
P

s2
ðyi 2 R̂xiÞðxi 2 �xÞ:

Note that this vLðt
0
RÞ is exactly the same as the linearization variance estimator by Rao

and Sitter (1995) under equi-probability sampling. The calculation of vLðt
0
RÞ has been

shown in the appendix.

3.2. Jackknife Variance Estimator

As pointed out by Rao and Sitter (1995), the jackknife method for single phase sampling is

not readily applicable to two-phase sampling. While deleting a data point for construction

of pseudo-values, two cases may arise. If the jth data point being deleted belongs to s2

then both the sample sums
P

s1
and

P
s2

in t 0G are affected, but when it belongs to s1 2 s2,

the only sample sum affected in t 0G is
P

s1
. Keeping that in mind, Roy and

Safiquzzaman (2003) adequately defined

yRð jÞ ¼
s2

X yi

p1ip2iðs1Þ
2

yj

p1jp2jðs1Þ
if j [ s2

s2

X yi

p1ip2iðs1Þ
if j [ s1 2 s2

8>>>>><
>>>>>:

xRð jÞ ¼
s2

X xi

p1ip2iðs1Þ
2

xj

p1jp2jðs1Þ
if j [ s2

s2

X xi

p1ip2iðs1Þ
if j [ s1 2 s2

8>>>>><
>>>>>:

and

x 0Rð jÞ ¼
s1

X xi

p1i

2
xj

p1j

if j [ s1

While jackknifing the estimator t 0Gð¼ tn 0 , say, when based on n0 observations), let us

denote by tn 021ð2jÞ the value of tn 0 based on a sample of size ðn 0 2 1Þ, obtained after

having deleted the jth pair ðxj; yjÞ from the original sample. Then the pseudo-values are

defined as

t 0j ¼ n 0tn 0 2 ðn 0 2 1Þtn 021ð2jÞ
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Here

tn 021ð2jÞ ¼
yRð jÞ þ

s2

X
Qiðs1Þxiyi 2 Qjðs1Þxjyj

s2

X
Qiðs1Þx

2
i 2 Qjðs1Þx

2
j

ðx 0Rð jÞ2 xRð jÞÞ if j [ s2

yRð jÞ þ B 0
Qðs1Þðx

0
Rð jÞ2 xRð jÞÞ if j [ s1 2 s2

8>>>>><
>>>>>:

Assuming for large sample size, ðn 0 2 1Þ=n 0 < 1, the jackknife estimator of the population

total is obtained as tJK ¼ ð1=n 0Þ
Pn 0

i¼1 t 0i with jackknife variance estimator as

vJðt
0
GÞ ¼

1

n 0ðn 0 2 1Þ

Xn 0

i¼1

ðt 0i 2 tJKÞ
2

¼
s2

X
gsi

ðyi 2 B 0
Qðs1ÞxiÞ

p1ip2iðs1Þ

� �2

þB 02

Qðs1Þ
s1

X xi

p1i

2
1

n 0
s1

X xi

p1i

 !2

þ 2B 0
Qðs1Þ

s2

X
gsi

ðyi 2 B 0
Qðs1ÞxiÞ

p1ip2iðs1Þ

xi

p1i

2
1

n 0
s1

X xi

p1i

 !

where

gsi ¼ 1 þ
Qiðs1Þxip1ip2iðs1Þ

s1

X
Qiðs1Þx

2
i s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !

The details of the calculation of vJðt
0
GÞ are shown in the appendix.

3.2.1. Particular Case

With Qiðs1Þ ¼ 1=ðxip1ip2iðs1ÞÞ; t
0
G reduces under equal probability sampling to the two-

phase ratio estimator t 0R ¼ R̂�x 0; where R̂ ¼ �y=�x and �x 0 ¼ ð1=n 0Þ
Pn 0

i¼1 xi: In this situation,

the jackknife variance estimator reduces to

vJðt
0
RÞ ¼ N 2 �x 0

�x

� �2
s2
e

n
þ R̂2 s

02
x

n 0
þ 2R̂

�x 0

�x

� �
sex

n 0

" #

which is exactly the same as the jackknife variance estimator of the two-phase ratio

estimator proposed by Rao and Sitter (1995). The calculation of vJðt
0
RÞ is shown in the

appendix.

3.3. Weighted Jackknife Variance Estimator

Under unequal probability sampling with units having wide diversity in their sizes, the

effect of deletion of units while constructing pseudo-values appears to be different for

different units of the sample. In this connection, let a unit of the sample either having a large

size measure or having a very high probability of inclusion, be designated as a “heavy” unit.

Under traditional conditions, the construction of pseudo-values does not take into

consideration the lack of balance caused by deletion of a “heavy” unit, and hence taking an
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unweighted average of those pseudo-values may lead to over- or under-estimation. So we

proposed to take a weighted average of the present set of pseudo-values with weights fixed

in such a way that while taking this average, more importance is given to the pseudo-values

resulting from the deletion of a “heavy” unit. In fact, our weighing system absorbs the

‘shock’ suffered by the pseudo-values due to deletion of “heavy” units.

Following this line of argument, Roy and Safiquzzaman (2002), in their work on

jackknife variance estimation for single-phase sampling, attached a weight function wi to

each pseudo-value ti, and defined the weighted jackknife estimators of the population total

as

tJKðwÞ ¼
S

Xwi

pi

ti

S

Xwi

pi

where wi $ 0 and
P

U wi ¼ 1:

To emphasize the role of wi as a “shock absorber,” Roy and Safiquzzaman (2002) wrote

in terms of Basu’s (1971) elephant example. Borrowing words from that article, the choice

of wi can be motivated as follows. Let wj be proportional to the current weight of the jth

elephant in the sample. If “Jumbo,” the heaviest elephant with small inclusion probability,

is the jth elephant selected in the sample, then the pseudo-value resulting from the deletion

of “Jumbo” may be written as

tj ¼ ntn 2 ðn2 1Þtn21ð2jÞ

where tn21ð2jÞ is the estimate of the population total based on s 2 {Jumbo}.

The second part of tj, being lighter and hence tj being heavier than other pseudo-values,

becomes prominent in the list and hence demands more attention. Thus if “Jumbo,” the

heaviest elephant with small inclusion probability, is selected against all odds, then

ðwj=pjÞ plays the role of an excellent buffer against the inaccuracy in tn21ð2jÞ; due to

deletion of “Jumbo.”

In our present work, in an attempt to develop the concept of weighted jackknife further

and to extend its application to the case of two-phase sampling, we take a weighted mean

of the pseudo-values and define the weighted jackknife estimator as

t 0JKðwÞ ¼
s2

X wi

p1ip2iðs1Þ
t 0i

s2

X wi

p1ip2iðs1Þ
s1

X wi

p1i

Keeping in mind the cause of imbalance in the sample, the choice of the weight wi; taking

cues from single-phase sampling, may be determined such that

ðiÞ wi . 0 and ðiiÞ Ep1

s1

X wi

p1i

 !
¼ 1

Let us now discuss two different choices of the weights. While the first choice is designed

to compensate to some degree for the imbalance caused by the varying probabilities of

inclusion (as discussed by Hajék 1971), the second choice similarly compensates for the

imbalance caused by the varying sizes of the units selected.
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Since tJKðwÞ is a Hajék type estimator, whatever may be the choice of wi, the weighted

jackknife variance estimator is given by

vJKðwÞ ¼
X

s2

XD2ijðs1Þ

p2ijðs1Þ

wiðt
0
i 2 t 0JKðwÞÞ

p1ip2iðs1Þ
2
wjðt

0
j 2 t 0JKðwÞÞ

p1jp2jðs1Þ

� �2

¼
X

s2

XD2ijðs1Þ

p2ijðs1Þ

wit
0
i

p1ip2iðs1Þ
2

wjt
0
j

p1jp2jðs1Þ

� �2

þ t 0
2
JKðwÞ

X
s2

XD2ijðs1Þ

p2ijðs1Þ

wi

p1ip2iðs1Þ
2

wj

p1jp2jðs1Þ

� �2

2 2t 0JKðwÞ
X

s2

XD2ijðs1Þ

p2ijðs1Þ

wit
0
i

p1ip2iðs1Þ
2

wjt
0
j

p1jp2jðs1Þ

� �
wi

p1ip2iðs1Þ
2

wj

p1jp2jðs1Þ

� �

Note: Here the objective of Choice 1 is to balance the extreme sampling weights and

that of Choice 2 is to balance the extreme sample observations.

4. A Simulation Study

We consider a natural population of Swedish municipalities, named MU284 in the book

by Särndal, Swensson, and Wretman (SSW) (1992). Sweden is divided into 284

municipalities having considerable variation in size and other characteristics. The data on

a few variables include RMT85, the revenue from municipal taxation (in millions of

Kronor) in 1985. They also include P85 and P75, the population (in thousands) in the years

1985 and 1975, respectively, for all the municipalities.

We consider the collection of these 284 municipalities as a finite population of size

N ¼ 284; where each municipality is considered to be a unit of the finite population. Also

we take RMT85, P85 and P75 as y, x and z, respectively. From the finite population of

size N ¼ 284 we select R (¼ 10,000) first-phase samples of size n 0 ð¼ 70Þ following the

Choice 1: Here wi’s are chosen such that

wi . 0; wi1p1ip2iðs1Þ and Ep1

s1

X wi

p1i

 !
¼ 1

An obvious choice satisfying these three conditions is

wi ¼
p1ip2iðs1Þ

n

Choice 2: Here wi’s are chosen such that

wi . 0; wi1Xi and Ep1

X
s1

wi

p1i

 !
¼ 1

The only choice here is wi ¼ ðXi=XÞ:
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Midzuno (1952) scheme of sampling. From each of these 10,000 first-phase samples, a

second-phase sample of size n ð¼ 20Þ is drawn again by employing the Midzuno (1952)

scheme with z as the size measure. Then we compare the conditional performance of the

linearized variance estimator and the jackknife variance estimator with that of the

weighted jackknife variance estimator. R (¼ 10,000) samples are arranged in increasing

order of magnitude of an ancillary

s1

X xi

p1i

s2

X xi

p1ip2iðs1Þ

0
BB@

1
CCA

that indicates the degree of balance in the sample and hence discriminates between “good”

and “bad” samples. The members of the ordered set of 10,000 samples are then grouped

into 10 subsets of 1,000 samples each. In each of these 10 groups, we calculate 1,000

variance estimates by the

. Linearization method ðvLÞ;

. Jackknife method ðvJÞ and

. Weighted jackknife method (vJKðwÞ ¼ vJp with wi ¼ p1ip2iðs1Þ=n as weight and

vJKðwÞ ¼ vJX with wi ¼ xi=X as weight).

Denoting by v(r) the variance estimator for the rth ðr ¼ 1ð1Þ1,000Þ sample within a

group of 1,000 samples, we calculate

�vL ¼
1

1,000

X1,000

r¼1

vLðrÞ; �vJ ¼
1

1,000

X1,000

r¼1

vJðrÞ

�vJp ¼
1

1,000

X1,000

r¼1

vJpðrÞ; �vJX ¼
1

1,000

X1,000

r¼1

vJXðrÞ

separately for all 10 groups of samples and compare results, conditionally for a fixed

average value of ð
P

s1
xi=p1iÞ=ð

P
s2
xi=p1ip2iðs1ÞÞ to the mean squared error given by

MSE ¼
1

10,000

X10,000

r¼1

ðtGðrÞ2 �tGÞ
2

where

�t 0G ¼
1

10,000

X10,000

r¼1

t 0GðrÞ

Relevant results in this context are given in Table 1.

4.1.1. Remark

From Table 1 and Figure 1 it is evident that, in the example given, the weighted

jackknife variance estimator is better than either the linearized or the traditional

jackknife variance estimator because the range about the MSE value is smallest for the

weighted jackknife variance estimator. Also the performance of the weighted jackknife

variance estimator for two different choices of the weights appears to be comparable,
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although it may be more important to compensate for extreme sampling weights than to

compensate for extreme observations for this set of data. (Results may vary noticeably

with other sample sizes and inclusion probabilities and other data. This is yet to be

determined. See Section 5)

Next we compare the performance of these variance estimators on the basis of Actual

Coverage Percentage (ACP), which gives the percentage of cases in which the confidence

interval (CI)

tG 7 ta=2

ffiffiffi
v

p

covers the actual value of the finite population total Y. The closer is the percentage

of coverage to 100ð1 2 aÞ, the better. To justify the use of the normal score, ta=2,

Table 1. Values of four estimated variances over 1,000 samples when N ¼ 284, n0 ¼ 70, n ¼ 20, and

MSE ¼ 2,349.46P
s1

xi

p1iP
s2

xi

p1ip2iðs1Þ

0
BB@

1
CCA

�vL �vJ �vJp �vJx

0.68 1,364.04 1,702.37 1,962.29 1,964.23
0.78 1,680.12 2,080.31 2,132.60 2,098.69
0.86 1,956.78 2,189.29 2,203.69 2,196.35
0.90 2,102.39 2,255.62 2,301.04 2,295.85
0.96 2,242.21 2,301.03 2,322.46 2,310.29
1.00 2,302.42 2,370.10 2,356.61 2,332.65
1.04 2,511.43 2,468.65 2,398.79 2,443.22
1.12 2,830.41 2,732.44 2,460.56 2,502.04
1.25 3,267.63 2,902.32 2,601.02 2,731.42
1.40 3,890.25 3,109.40 2,756.22 2,895.92

1350

1850

2350

2850

3350

3850

0.68 0.78 0.86 0.9 0.96 1 1.04 1.12 1.25 1.4

Group Average

V
ar

ia
nc

e

MSE

Estimated variance by linearized method

Estimated variance by ordinary jackknife method

Estimated variance by weighted jackknife method with
weight proportional to inclusion probabilities

Estimated variance by weighted jackknife method with
weight proportional to X

Fig. 1. Comparison of variance estimates by different methods with MSE
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we calculate the value of

b1 ¼
1

R

XR
r¼1

t 0GðrÞ2 �t 0G
sG

� �3

and b2 ¼
1

R

XR
r¼1

t 0GðrÞ2 �t 0G
sG

� �4

where t 0GðrÞ is the value of t 0G based on the rth sample, �t 0G ¼ ð1=RÞ
PR

r¼1 t 0GðrÞ and

sG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=RÞ

PR
r¼1 ðt 0GðrÞ2 �tGÞ

2

q
:

It is noted that for R ð¼ 10,000Þ samples, the value of ð
ffiffiffiffiffi
b1

p
;b2Þ is ð0:015; 2:983Þ; which

is not far from ð0; 3Þ; indicating normality (Table 2).

4.1.2. Remark

From the above table it appears that with respect to ACPs, the performance of the weighted

jackknife variance estimator is very good though the ordinary jackknife variance estimator

is a close rival.

4.1.3. Note

A similar simulation experiment was performed for an earlier draft of this article, using

substantially fewer replications yet yielded similar results. Therefore our results seem

valid for the present set of data.

5. Conclusion and Future Topics

From the results obtained in the limited simulation exercise reported in this article, the

weighted jackknife method appears promising indeed. We are applying the weighted

jackknife technique to a variety of data with the goal of exploring a solid theoretical

foundation that may better explain why this new technique yielded a performance superior

to that of either of the other variance estimation techniques. Regarding the choice of

weight, a general rule is to be framed so that the weight chosen will compensate to some

extent for both the extreme observations and extreme weights simultaneously. These are

topics of our research which are expected to be reported later.

Table 2. Values of ACPs with a ¼ 0.05 for four variance estimates over 1,000 samples, when N ¼ 284, n0 ¼ 70,

n ¼ 20, where MSE ¼ 2,349.46 and (
ffiffiffiffiffi
b1

p
;b2) ¼ (0.015, 2.983)P

s1

xi

p1iP
s2

xi

p1ip2iðs1Þ

0
BB@

1
CCA

ACPs corresponding to

�vL �vJ �vJp �vJx

0.68 81.2 90.2 92.6 92.6
0.78 87.6 92.1 93.8 93.1
0.86 89.1 93.0 94.3 94.0
0.90 91.2 93.3 94.8 94.3
0.96 93.8 94.4 94.9 94.7
1.00 94.3 95.3 95.1 94.9
1.04 96.8 96.5 95.5 95.7
1.12 98.0 97.8 96.0 96.6
1.25 99.4 98.9 96.6 97.0
1.40 99.8 99.6 97.1 98.0
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Appendix 1: Calculation of vJðt
0
GÞ

vJðt
0
GÞ ¼

1

n 0ðn 0 2 1Þ

Xn 0

i¼1

ðt 0i 2 tJKÞ
2 ¼

n 0 2 1

n 0

Xn 0

i¼1

tn 021ð2jÞ2
1

n 0

Xn 0

j¼1

tn 021ð2jÞ

( )

where

tn 021ð2jÞ ¼
yRð jÞ þ

s2

X
Qiðs1Þxiyi 2 Qjðs1Þxjyj

s2

X
Qiðs1Þx

2
i 2 Qjðs1Þx

2
j

ðx 0Rð jÞ2 xRð jÞÞ if j [ s2

yRð jÞ þ B 0
Qðs1Þðx

0
Rð jÞ2 xRð jÞÞ if j [ s1 2 s2

8>>>>><
>>>>>:

yRð jÞ ¼
s2

X yi

p1ip2iðs1Þ
2

yj

p1jp2jðs1Þ
if j [ s2

s2

X yi

p1ip2iðs1Þ
if j [ s1 2 s2

8>>>><
>>>>:

xRð jÞ ¼
s2

X xi

p1ip2iðs1Þ
2

xj

p1jp2jðs1Þ
if j [ s2

s2

X xi

p1ip2iðs1Þ
if j [ s1 2 s2

8>>>><
>>>>:

and

x 0Rð jÞ ¼
s1

X xi

p1i

2
xj

p1j

if j [ s1

If j [ s2

tn 021ð2jÞ ¼
s2

X yi

p1ip2iðs1Þ
2

yj

p1jp2jðs1Þ

 !
þ

s2

X
Qiðs1Þxiyi 2 Qjðs1Þxjyj

s2

X
Qiðs1Þx

2
i 2 Qjðs1Þx

2
j

0
BB@

1
CCA

£
s1

X xi

p1i

2
xj

p1j

 !
2

s2

X xi

p1ip2iðs1Þ
2

xj

p1jp2jðs1Þ

 !( )

Assuming

Qjðs1Þxjyj

s2

X
Qiðs1Þxiyi




















, 1 and

Qjðs1Þx
2
j

s2

X
Qiðs1Þx

2
i




















, 1

we get

tn 021ð2jÞ ¼ tn 0 2 gsj
yj 2 B 0

Qðs1Þxj

p1jp2jðs1Þ
2 B 0

Qðs1Þ
xj

p1j
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where

gsi ¼ 1 þ
Qiðs1Þxip1ip2iðs1Þ

s1

X
Qiðs1Þx

2
i s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !

and

1

n 0
s2

X
tn 021ð2jÞ ¼

1

n 0
ðntn 0 Þ2

s2

X
gsi

yi 2 B 0
Qðs1Þxi

p1ip2iðs1Þ
2 B 0

Qðs1Þ
s2

X xj

p1j

" #

¼
n

n 0
tn 0 2

1

n 0
s2

X
1þ

Qiðs1Þxip1ip2iðs1Þ

s1

X
Qiðs1Þx

2
i s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !8>><
>>:

9>>=
>>;
yi2B 0

Qðs1Þxi

p1ip2iðs1Þ

2
1

n 0
B 0
Qðs1Þ

s2

X xj

p1j

¼
n

n 0
tn 0 2

1

n 0
s2

Xyi2B 0
Qðs1Þxi

p1ip2iðs1Þ
þ

s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !
s2

X
Qiðs1Þxiðyi2B 0

Qðs1ÞxiÞ

s2

X
Qiðs1Þx

2
i

2
1

n 0
B 0
Qðs1Þ

s2

X xj

p1j

¼
n

n 0
tn 0 2

1

n 0
s2

Xyi2B 0
Qðs1Þxi

p1ip2iðs1Þ
þ02

1

n 0
BQðs1Þ

s2

X xj

p1j

¼
n

n 0
tn 0 2

1

n 0
tn 0 þ

1

n 0
B 0
Qðs1Þ

s1

X xi

p1i

2
1

n 0
B 0
Qðs1Þ

s2

X xj

p1j

If j [ s1 2 s2

tn 021ð2jÞ¼
s2

X yi

p1ip2iðs1Þ
þB 0

Qðs1Þ
s1

X xi

p1i

2
xi

p1i

( )
2

s2

X xi

p1ip2iðs1Þ

" #
¼tn 02B 0

Qðs1Þ
xj

p1j

and

1

n 0

X
s12s2

tn 021ð2jÞ¼
n 02n

n 0
tn 02B 0

Qðs1Þ
X
s12s2

xi

p1i

Therefore

vJðt
0
GÞ¼

n 021

n 0

Xn 0

i¼1

tn 021ð2jÞ2
1

n 0

Xn 0

j¼1

tn 021ð2jÞ

( )2

¼
n 021

n 0
s1

X
2gsi

yi2B 0
Qðs1Þxi

p1ip2iðs1Þ
2B 0

Qðs1Þ
xi

p1i

þB 0
Qðs1Þ

1

n 0
s1

X xi

p1i

( )2
2
4

3
5
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So for large n0

vJðt
0
GÞ¼

s2

X
gsi

ðyi2B 0
Qðs1ÞxiÞ

p1ip2iðs1Þ

� �2

þB 0
Qðs1Þ

s1

X xi

p1i

2
1

n 0
s1

X xi

p1i

 !2

þ2B 0
Qðs1Þ

s2

X
gsi

ðyi2B 0
Qðs1ÞxiÞ

p1ip2iðs1Þ

xi

p1i

2
1

n 0
s1

X xi

p1i

 !

Appendix 2: Calculation of vLðt
0
RÞ and vJðt

0
RÞ

We already obtained the expression for vLðt
0
GÞ as

vLðt
0
GÞ ¼

X
s2

X D1ij

p1ijp2ijðs1Þ

eiðs1Þ

p1i

2
ejðs1Þ

p1j

� �2

þB 0
Q2 s1ð Þ

X
s1

XD1ij

p1ij

xi

p1i

2
xj

p1j

� �2

þ 2B 0
Qðs1Þ

X
s2

X D1ij

p1ijp2ijðs1Þ

eiðs1Þ

p1i

2
ejðs1Þ

p1j

� �
xi

p1i

2
xj

p1j

� �

þ
X

s2

XD2ijðs1Þ

p2ijðs1Þ

eiðs1Þ

p1ip2iðs1Þ
2

ejðs1Þ

p1jp2jðs1Þ

� �2

With the choice of Qiðs1Þ ¼ 1=ðxip1ip2iðs1ÞÞ we get

B 0
Qðs1Þ ¼

s2

X yi

p1ip2iðs1Þ

s2

X xi

p1ip2iðs1Þ

¼ B 0
Rðs1Þ ðsayÞ and eiðs1Þ ¼ yi 2 B 0

Rðs1Þ

So the above variance estimator can be written as

vLðt
0
RÞ ¼

X
s2

X D1ij

p1ijp2ijðs1Þ

yi 2 B 0
Rðs1Þxi

p1i

2
yj 2 B 0

Rðs1Þxj

p1j

� �2

þ B 0
R

2ðs1Þ
X

s1

XD1ij

p1ij

xi

p1i

2
xj

p1j

� �2

þ 2B 0
R

2ðs1Þ
X

s2

X D1ij

p1ijp2ijðs1Þ

yi 2 B 0
Rðs1Þxi

p1i

2
yj 2 B 0

Rðs1Þxj

p1j

� �
xi

p1i

2
xj

p1j

� �

þ
X

s2

XD2ijðs1Þ

p2ijðs1Þ

yi 2 B 0
Rðs1Þxi

p1ip2iðs1Þ
2

yj 2 B 0
Rðs1Þxj

p1jp2jðs1Þ

� �2

¼
X

s2

X D1ij

p1ijp2ijðs1Þ

yi 2 B 0
Rðs1Þxi

p1i

2
yj 2 B 0

Rðs1Þxj

p1j

� �2

þ
X

s2

XD2ijðs1Þ

p2ijðs1Þ

yi 2 B 0
Rðs1Þxi

p1ip2iðs1Þ
2

yi 2 B 0
Rðs1Þxj

p1jp2jðs1Þ

� �2

þ B 0
R

2ðs1Þ
X

s1

XD1ij

p1ij
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p1i

2
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p1j
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Rðs1Þ
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X D1ij

p1ijp2ijðs1Þ
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p1i

2
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Under equal probability sampling, we take

p1i ¼
n 0

N
; p2iðs1Þ ¼

n

n 0
; p1ij ¼

n 0ðn 0 2 1Þ

NðN 2 1Þ
and p2ijðs1Þ ¼

nðn2 1Þ

n 0ðn 0 2 1Þ

So we may write

D1ij ¼ p1ip1j 2 p1ij ¼
n 0

N
:
ðN 2 n 0Þ

NðN 2 1Þ
;

D2ijðs1Þ ¼ p2iðs1Þp2jðs1Þ2 p2ijðs1Þ ¼
n

n 0
·
ðn 0 2 nÞ

n 0ðn 0 2 1Þ
;

B 0
Rðs1Þ ¼

�y

�x
¼ R̂ and eiðs1Þ ¼ yi 2 R̂xi

Using the above results we get

vLðt
0
RÞ ¼ N 2·

N 2 n 0

Nn 0

1

nðn2 1Þ

X
s2

X
ðyi 2 R̂xiÞ2 ðyj 2 R̂xjÞ
� �2

þ N 2·
n 0 2 n

n 0n

1

nðn2 1Þ

X
s2

X
ðyi 2 R̂xiÞ2 ðyj 2 R̂xjÞ
� �2

þ R̂2N 2·
N 2 n 0
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1

n 0ðn 0 2 1Þ

X
s1

X
ðxi 2 xjÞ

2

þ 2R̂N 2·
N 2 n 0
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1

nðn2 1Þ

X
s2

X
ðyi 2 R̂xiÞ2 ðyj 2 R̂xjÞ
� �

ðxi 2 xjÞ

¼ N 2 N 2 n

Nn

� �
1

ðn2 1Þ
s2

X
ðyi 2 R̂xiÞ

2 þ R̂2 N 2 n 0

Nn 0

� �
1

n 0 2 1
s1

X
ðxi 2 �xÞ2

"

þ 2R̂
N 2 n 0

Nn 0

� �
1

ðn2 1Þ
s2

X
ðyi 2 R̂xiÞðxi 2 �xÞ

#

Now ignoring the finite population correction, the variance estimator of t 0R takes the form

vLðt
0
RÞ ø N 2 s2

e

n
þ R̂2 s

02
x

n 0
þ 2R̂

sex

n 0

" #

Now let us refer to the expression for vJðt
0
GÞ obtained in Appendix 1.

With the choice Qiðs1Þ ¼ 1=ðxip1ip2iðs1ÞÞ we get

gsi ¼ 1 þ
1

s2

X xi

p1ip2iðs1Þ
s1

X xi

p1i

2
s2

X xi

p1ip2iðs1Þ

 !

¼
s1

X xi

p1i

s2

X xi

p1ip2iðs1Þ

¼ gsiðRÞ say
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and we get

vJðt
0
RÞ ¼

s2

X
gsiðRÞ

ðyi 2 B 0
Rðs1ÞxiÞ

p1ip2iðs1Þ

� �2

þB 0
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2
1

n 0
s1

X xi

p1i

 !

Under equal probability sampling, gsi(R) reduces to ð�x 0=�xÞ, and the jackknife variance

estimator takes the following form:

vJðt
0
RÞ ø N 2 �x 0

�x

� �2
s2
e

n
þ R̂2 s

02
x

n 0
þ 2R̂

�x 0

�x

� �
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n 0

" #
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