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Variance Estimation for Measures of Income Inequality and
Polarization ± The Estimating Equations Approach

Milorad S. KovacÆevicÂ 1 and David A. Binder 2

1. Introduction

Estimates of measures of income inequality and polarization are often required in studies

of income distributions. When income distributions are compared from region to region or

through time one should account for their sampling variability. Lack of information on

standard errors con®nes the role of measures of income inequality to that of descriptive

devices rather than inferential tools for formal statistical inference.

The common characteristic of these measures is their complexity. They are nonlinear

functions of the observations. Some of them depend on the ordered observations or quan-

tiles. In addition, income data usually come from complex surveys (strati®ed, multistage,

cluster samples with unequal probabilities of selection). Consequently, the variances of

these measures are not expressible by simple formulae. Since they cannot be estimated

by conventional variance estimation methods, one has to rely on approximate variance

estimation techniques.

Here an approximate standard error estimation technique is presented. It is based on the

theory of estimating equations (EE) as developed by Binder (1991), and Binder and Patak

(1994). The problem of estimating income inequality measures and their standard errors

using estimating equations has been addressed by Binder (1992) and the extension to

survey sampling was made by Binder and KovacÆevicÂ (1995). In this article, the EE method

is applied to estimating some common measures of income inequality and their standard

errors that were not addressed previously by Binder and KovacÆevicÂ (1995). These

The estimating equations technique for variance estimation is demonstrated on a variety of
income inequality and polarization measures when data are obtained in a complex survey.
This method, based on the Taylor linearization, is computationally nonintensive and easy
to implement. Six different measures are considered. An example based on data from the
Canadian Survey of Consumer Finance is given.
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measures are the coef®cient of variation and the exponential measure of inequality. We

also present the estimation of the polarization curve and the polarization index as de®ned

in Foster and Wolfson (1992) and Wolfson (1994).

Some basic EE theory is reviewed in Section 2. The ®nite population versions of the

measures of income inequality and polarization and their estimates based on a complex

sample are introduced in Section 3. This section and the Appendix contain derivations

of the standard error estimators for these measures. Finally, we apply EE methodology

to data on earnings from the Canadian Survey of Consumer Finance from 1992. In the

summary section we give a table with expressions for the most frequently used income

inequality and polarization measures and their standard errors.

In this article we consider only the form of the estimator of the sampling variance for

these complex measures of income inequality. A fuller understanding of the properties

of these estimators requires the use of simulation studies. Results from a large simulation

study undertaken at Statistics Canada (KovacÆevicÂ, Yung, and Pandher 1995) strongly

con®rm the advantage of the EE method over several competing methods for the variance

estimation of measures based on order statistics ± such as quantiles ± Lorenz curve

ordinates and the polarization index. For the same measures, the study showed that the

EE method and the bootstrap method performed similarly. We summarize the relevant

®ndings of the study in Section 4.

2. The Estimating Equations Method in Survey Sampling ± A Review

A general formulation of the EE approach for large sample complex surveys is given

in Binder and Patak (1994). In this section we summarize the main results needed for

the derivations in Section 3. Whereas Godambe and Thompson (1986) considered the

optimality of estimating equations, the approach we take follows that of Binder and Patak

(1994) who concentrate on the asymptotic properties for a given set of EE's.

In general, for in®nite populations with a continuous distribution function F�y; v� and

differentiable density function f �y; v�, an estimate of the parameter v may be obtained

from the maximum likelihood equation U�v� � S¶ log f �yi; v� =¶v � 0. The optimality

of this estimating equation for superpopulation models is discussed by Godambe and

Thompson (1986).

In the case of the ®nite population, parameters are de®ned explicitly as functions of the y

values of all population units, i.e., v � g�y1;¼; yN�. They may also be de®ned implicitly,

for example, by maximizing the likelihood function derived by considering the ®nite

population as a sample from an in®nite parametric population, or by minimizing a certain

loss function. Examples are the population mean mN � SYi=N for the ®rst, and the

regression coef®cient for the second typeX
�yi ÿ x 0

ib�
2 ! min :

In both cases, the parameter v can be regarded as the solution, vN , to the equation

U�v� �
XN

i�1

u�yi; v� � 0 �1�

The choice of an estimating function u�yi; v� for a particular parameter may not be
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unique in general. However, the inference obtained using our approach will not depend on

the choice of estimating function, even when more than one set of estimating functions is

used to de®ne the parameter of interest.

To estimate a ®nite population parameter when the estimating function u�yi; v� is given,

suppose that a random sample s from a ®nite population is available. The expression U�v�

in (1) can be estimated by an extension of the Horvitz-Thompson (HT) unbiased estimator,

as discussed by Rao (1979), as

ÃU�v� �
XN

i�1

wi�s�u�yi; v� �2�

where the weight wi�s� is equal to 0 whenever the ith unit is not in the sample and

SN
i�1wi�s� � ÃN.

If we use the HT estimator, the weights are the inverse of the inclusion probabilities

wi�s� �
1=pi; i [ s

0; i Ó s

(
Or, for example, if we use general regression estimation based on an auxiliary variable x

wi�s� �

1

pi

1 � �X ÿ ÃX�
xi

ÃX 0

� �
; i [ s

0; i Ó s

8><>:
where X is the known population total for the variable x, and ÃX and ÃX 0 are the HT estimates

of the totals for x and x 2, respectively.

The solution Ãv of the equation ÃU�v� � 0 is the EE estimate of the ®nite population para-

meter vN .

The estimating function u�y; v� provides a Gauss consistent estimate (Godambe and

Kale 1991). That is, if we observe all values in the ®nite population then the estimate

obtained using the estimating equation is equal to the parameter.

To estimate the variance of Ãv we proceed as follows. Equation (2) can be rewritten as

0 � ÃU�Ãv� �
XN

i�1

�u�yi; Ãv� ÿ u�yi; vN�� �
XN

i�1

wi�s�u�yi; vN�

�
XN

i�1

�u�yi; Ãv� ÿ u�yi; vN���wi�s� ÿ 1� �3�

This decomposition of the estimating equation is analogous to the one given in Binder

(1991). We denote the last term in (3) by R. The remainder R is generally of order

o� jÃv ÿ vN j�, which is asymptotically negligible as Ãv ! vN . Expanding the function

u�y; Ãv� around vN using Young's form of Taylor's Theorem (Ser¯ing 1980, p. 45), we have

0 � ÃU�Ãv� �
XN

i�1

�Ãv ÿ vN�
¶u�yi; v�

¶v

����
v� vN

� o�jÃv ÿ vN j� �
XN

i�1

wi�s�u�yi; vN� � R

Ignoring the remainder terms, the difference Ãv ÿ vN can be expressed as

Ãv ÿ vN <
XN

i�1

wi�s�u
�
�yi; vN�
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where

u�
�yi; vN� � ÿJ ÿ1

v u�yi; vN� and Jv �
XN

i�1

¶u�yi; v�

¶v

����
v� vN

Once the expression for u�
�y; vN� is obtained, estimation of the mean squared error of Ãv

becomes straightforward. Since Ãv ÿ vN can be approximated by an estimator of the popu-

lation total of u�
�yi; vN�'s, we can use the variance estimation technique for the estimate of

a total, i.e.,

var�Ãv� � var�Ãv ÿ vN� < var
X

s

wiu
�
�yi; vN�

 !
�4�

Note that u�
�yi; vN� depends on an unknown parameter. When we substitute its estimate

into u�
�y; vN�, we obtain u�

i � u�
�yi; Ãv�, and the value of Sswiu

�
i is exactly zero. To approx-

imate the variance of Ãv, we must treat the u�'s according to the EE approach explained in

Binder and Patak (1994) and replace vN by Ãv only in the ®nal expression of the variance

(4).

Generally, the parameter v is multidimensional. Binder (1991) and Binder and Patak

(1994) considered the case where the ®rst component of the vector v is the parameter of

interest vN and the others are nuisance parameters lN . In this case U�v� � U�v; l� and

can be partitioned as �U1�v;l�;U2�v;l��
0 and estimated so that the following equality holds

0 �
ÃU1�

Ãv; Ãl�

ÃU2�
Ãv; Ãl�

" #
�5�

A decomposition similar to (3) can be applied to (5). Hence

0 �
ÃU1�

Ãv; Ãl�

ÃU2�
Ãv; Ãl�

" #
�

XN

i�1

�u1�yi; Ãv; Ãl� ÿ u1�yi; vN ; Ãl�� �
XN

i�1

�u1�yi; vN ; Ãl� ÿ u1�yi; vN ; lN��

XN

i�1

�u2�yi; Ãv; Ãl� ÿ u2�yi; vN ; Ãl�� �
XN

i�1

�u2�yi; vN ; Ãl� ÿ u2�yi; vN ; lN��

2666664

3777775

�

XN

i�1

wi�s�u1�yi; vN ;lN�

XN

i�1

wi�s�u2�yi; vN ;lN�

2666664

3777775� R

where

R �

XN

i�1

�u1�yi;
Ãv; Ãl� ÿ u1�yi; vN ; lN���wi�s� ÿ 1�

XN

i�1

�u2�yi; Ãv; Ãl� ÿ u2�yi; vN ; lN���wi�s� ÿ 1�

2666664

3777775
and is negligible whenever R � o�jÃv ÿ vj�.
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Expanding the function ÃU�Ãv; Ãl� around �vN ;lN� we obtain

0 <
J1vJ1l

J2vJ2l

" #
Ãv ÿ vN

Ãl ÿ lN

" #
�

ÃU1�vN ;lN�

ÃU2�vN ;lN�

" #
�6�

where

J1v �
¶U1�v;l�

¶v

����
v�vN ;l�lN

; J1l �
¶U1�v;l�

¶l

����
v�vN ;l�lN

; J2v �
¶U2�v;l�

¶v

����
v�vN ;l�lN

and J2l �
¶U2�v;l�

¶l

����
v�vN ;l�lN

Matrices J1v, J1l, J2v, and J2l are of order 1 ´ 1, 1 ´ k, k ´ 1, and k ´ k, respectively,

where k is the number of nuisance parameters. Solving equation (6) with respect to the

difference Ãv ÿ vN we obtain

Ãv ÿ vN< ÿ �J ÿ1
1v � J ÿ1

1v J1l�J2l ÿ J2vJ
ÿ1
1v J1l�

ÿ1J2vJ
ÿ1
1v � ÃU1�vN ; lN�

� J ÿ1
1v J1l�J2l ÿ J2vJ

ÿ1
1v J1l�

ÿ1 ÃU2�vN ; lN�

In most cases of practical importance we ®nd that U2�v; l� does not depend on v, so that

J2v � 0. Also, we assume that the ®rst derivatives of the functions u1�y; v; l� and u2�y; v;l�

with respect to v are independent of l. Taking these assumptions into account we reduce

the above expression to

Ãv ÿ vN < �ÿ ÃU1�vN ;lN� � J1lJ ÿ1
2l

ÃU2�vN ;lN��J
ÿ1
1v

�
XN

i�1

wi�s��ÿu1�yi; vN ;lN� � J1lJ ÿ1
2l u2�yi; vN ; lN��J

ÿ1
1v

�
XN

i�1

wi�s�u
�
�yi; vN ; lN� �7�

Using this expression we can estimate the variances of various complex statistics as the

variances of the estimated totals. As mentioned earlier, to approximate the variance of Ãv,

we replace vN , lN , and possibly N, by Ãv, Ãl and Sswi, respectively, only in the ®nal expres-

sion of the variance. It should be noted that the derivation of this expression in Binder and

Patak (1994) was based directly on con®dence interval construction.

Income data are usually collected on a strati®ed, multistage sample with many strata,

where a few primary sampling units (clusters), nh�$2�, are sampled from each stratum

without replacement. However, to simplify calculation for variance estimation we assume

that the clusters are selected with replacement. Such an approximation leads to a conser-

vative estimate of the variance with a small relative bias when the number of primary

sampling units is small in each stratum. Let whci be the weight attached to the ith ultimate

unit in the cth cluster of the hth stratum such that the appropriate estimator of the population

total for some characteristic, say x, is

ÃT �
X

s

whcixhci
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Then its variance can be estimated by

var� ÃT� �
X

h

nh

nh ÿ 1

X
c

X
i

whcixhci ÿ

X
c

X
i

whcixhci

nh

0B@
1CA

2

Accordingly,

var�Ãv� � var�Ãv ÿ vN� < var
X

s

whciu
�
�yhci; vN ;lN�

 !

<
X

h

nh

nh ÿ 1

X
c

X
i

whciu
�
hci ÿ

X
c

X
i

whciu
�
hci

nh

0B@
1CA

2

where u�
hci � u�

�yhci; Ãv; Ãl�.

3. Income Inequality and Polarization Measures and Their Standard Errors

We now consider several measures of inequality and polarization. Usually these measures

are computed from grouped data. Here we provide their estimates based on a probability

sample from a ®nite population. Also, we derive the estimates of their standard errors.

Since our goal is not to study these measures and their properties in depth, we summarize

some general notions about measuring inequality using the selected measures.

Determining whether the values of x are ``more equal'' than the values of y essentially

coincides with measuring the dispersion of the corresponding distributions. Depending on

whether we are interested in inequality in a particular segment or in the whole distribution,

the relevant measures may be categorized as extreme, average or summary measures.

Extreme measures focus on inequality in the tails of the income distribution. In this article

we include one such measure, the exponential measure (Wolfson 1986), which is low-

income sensitive in the sense that the main contribution to its value comes from small

or negative incomes. A smaller value of the exponential measure indicates greater equality

among the poor.

Although the coef®cient of variation belongs formally to the category of average

inequality measures, because of its sensitivity to high incomes it is often used to assess

inequality among high-income earners. While the coef®cient of variation measures devia-

tion from a central value (the mean income), the Gini index accounts for the deviations of

all the values in the population among themselves. In this way the Gini index is an average

measure of inequality, and very robust to inequalities in the tails.

The primary summary measure is the Lorenz curve. For a given distribution it plots the

cumulative percentage of the population (displayed from the poorest to the richest) against

its total income share. The area between the Lorenz curve and the 45-degree line is known

as the Lorenz area. The Gini index is equal to twice the Lorenz area. A population with the

Lorenz curve closer to the 45-degree line has a more equal distribution of income. If all

incomes are the same, the Lorenz curve degenerates to the 45-degree line. However, if

Lorenz curves for two or more income distributions intersect, only a partial ranking of
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the distributions is possible. In such cases, the use of different measures may rank the dis-

tributions differently. A small set of inequality measures that are sensitive to different

magnitudes of income could help interpretation of such ``con¯icting'' ®ndings.

Since the early 1980s there have been discussions about the disappearing middle class

phenomenon which is essentially different from the notion of inequality in income (or

wealth) distribution and therefore needs a different quanti®cation. The usual term for

the shrinking of the middle class is polarization, indicating that the middle is moving

toward the tails. Here we present two summary polarization measures, the polarization

curve and the polarization index, as de®ned by Foster and Wolfson (1992).

In this section we present six measures of income inequality and polarization along with

their complex sample estimators and the u� variates needed for variance estimation via the

EE method. To simplify notation we drop the subscript N from the ®nite population

parameters.

3.1. The coef®cient of variation

The coef®cient of variation (squared) is de®ned as CV 2
� V =m2 where V is the variance

and m is the mean income of the population. As a measure of income inequality it belongs

to the family of measures that are high-income sensitive and relatively robust to the low

income part of the population. It is easy to calculate and has a familiar interpretation. Its

disadvantage is, however, a high sampling variability. The CV 2 can be obtained as a

solution to the system of equations

U1�CV 2;m� �
X

U

��yi=m ÿ 1�2 ÿ CV 2
� � 0

U2�CV 2;m� �
X

U

�yi ÿ m� � 0

8>><>>:
Note that the parameter of interest is CV 2 and the nuisance parameter is m.

Then the estimate of the coef®cient of variation can be obtained as a solution to the

following estimating equations

ÃU1�CV 2;m� �
X

s

wi��yi=m ÿ 1�2 ÿ CV 2
� � 0

ÃU2�CV 2;m� �
X

s

wi�yi ÿ m� � 0

8>><>>:
and takes on the familiar form

ÃCV 2
�

1

ÃN

X
s

wi�yi= Ãm ÿ 1�2

where Ãm � Sswiyi= ÃN.

In order to estimate the variance of ÃCV 2, the u� variates are needed. Their derivation is

essentially a three-step procedure:

(i) First we determine the derivatives

J1;CV 2
� ÿN; J1;m � ÿ2NCV 2=m; and J2;m � ÿN
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(ii) Next, we substitute these derivatives into equation (7) and obtain

u�
�yi;CV 2;m� � ��yi=m ÿ 1�2 ÿ �2yi=m ÿ 1�CV 2

� =N

(iii) Finally, var� ÃCV 2
� � var�Sswiu

�
�yi;CV 2;m��.

In the case of multistage sampling the estimated variance takes the form

var� ÃCV 2
� �

X
h

nh

nh ÿ 1

X
c

�u�
hc ÿ Åu�

h�
2

where u�
hc � Siwhciu

�
hci; u�

hci � u�
�yhci; ÃCV 2; Ãm� and Åu�

h � Scu�
hc =nk.

The remainder term R in the case of ÃCV 2 is

R �

X
U

��yi = Ãm ÿ 1�2 ÿ ÃCV 2
ÿ �yi =m ÿ 1�2 � CV 2

��wi ÿ 1�

X
U

��yi ÿ Ãm� ÿ �yi ÿ m���wi ÿ 1�

2664
3775

The ®rst component, after some simpli®cation, becomes asymptotically equivalent to the

product o�j ÃCV 2
ÿ CV 2

j�:o�j Ãm ÿ mj�:o�j ÃN ÿ Nj� as ÃCV 2 ! CV 2, Ãm ! m and ÃN ! N.

Similarly, the second component is equivalent to o�j Ãm ÿ mj�:o�j ÃN ÿ Nj�.

For the coef®cient of variation (unsquared) a different expression for u�
i is obtained

u�
i �

1

2
��yi = Ãm ÿ 1�2= ÃCV ÿ �2yi = Ãm ÿ 1� ÃCV� = ÃN

3.2. The exponential measure

The exponential measure is de®ned as the population mean of the exponentially

transformed income (see Wolfson 1986)

EX �
1

N

X
U

exp�ÿyi =m�

This measure is sensitive to low income values but takes a reasonable ®nite value when

income is in the neighbourhood of zero. Also, it is well de®ned for negative incomes.

It can be obtained as a solution to the equations

U1�EX;m� �
X

U

fexp�ÿyi =m� ÿ EXg � 0

U2�m� �
X

U

�yi ÿ m� � 0

8>><>>: �8�

The derivation of u� variates is similar to the previous case of the coef®cient of variation

and is given in detail in the Appendix. Here we present just the ®nal form

u�
�yi; ÃEX; Ãm� � �exp�ÿyi = Ãm� ÿ ÃEX � �yi ÿ Ãm�ÃJ1;m = ÃN�= ÃN

where ÃJ1;m � �1= Ãm2
�Sswiyi exp�ÿyi = Ãm�
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3.3. The Lorenz curve

Earlier we described the Lorenz curve as a powerful descriptive and analytic tool for rank-

ing income distributions. It simply depicts the cumulative income against the population

share. The formal ®nite population de®nition of the Lorenz curve can be stated as

L�p� �
1

Nm

X
U

yi Ifyi # ypg 0 # p # 1

where If:g denotes an indicator function and yp is the pth population income quantile.

To use the EE method, the Lorenz curve ordinates can be expressed as the solution to

the system of equationsX
U

�Ifyi # ypg ÿ L�p��yi � 0

X
U

�Ifyi # ypg ÿ p� � 0 for 0 # p # 1

8>><>>:
The second equation de®nes the ®nite population quantile. The resulting sample estimate

is

ÃL�p� �
1

ÃN Ãm

X
s

wi yiIfyi # Ãypg

where Ãyp is the pth sample quantile, Ãyp � inffyi [ sj ÃF�yi� $ pg, formally obtained as a

solution to the equationX
s

wi�Ifyi # ypg ÿ p� � 0; or ÃF�yp� � p

where ÃF�y� � Swi�s�Ifyi # yg= ÃN is an estimate of the ®nite population cumulative

distribution function.

For variance estimation of the Lorenz curve ordinates we use the values of u�
i

u�
i �

1

ÃN Ãm
��yi ÿ

Ãyp�Ifyi # Ãypg � pÃyp ÿ yi
ÃL�p��

and formula (4). A detailed derivation of the above expression is given in Binder and

KovacÆevicÂ (1995).

3.4. The Gini index

One of the most popular measures of income inequality, the Gini index, is de®ned as the

standardized Lorenz area, i.e., the ratio between the actual and the largest possible Lorenz

area (which is 1/2). Hence, it takes values in [0,1]. The ®nite population form is given as

(see Glasser 1962)

G �
1

N

X
U

�2Fi ÿ 1�yi =m

where Fi � F�yi� � �1=N�Sj[UIfyj # yig is the value of the ®nite population distribution

function at yi. The Gini index is sensitive to income values in the middle of the distribu-

tion. Its disadvantage is that it is not de®ned for negative incomes. It can be de®ned as a
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solution to the equation

U1�G; fFigi[U ;m� �
X

U

��2Fi ÿ 1�yi =m ÿ G� � 0

where the nuisance parameter l � ffFigi[U ; mg is the solution to the system of equations

X
j [ U

�Ifyj # yig ÿ Fi�

( )
i[U

� 0

X
U

�yi ÿ m� � 0

8>>>><>>>>: �9�

There are N unknown parameters (since one of the Fi's is equal to 1). With N population

values of y, we are able to solve the system.

The estimate of the Gini index comes as the solution to the estimated ®rst equation

ÃG �
1

ÃN Ãm

X
s

wi�2 ÃFi ÿ 1�yi �10�

where ÃFi and Ãm are the solutions to the system of estimated equations (9).

The variance of the Gini index is estimated by expression (4) where the u� variates are

equal to

u�
i �

2

ÃN Ãm
ÃA�yi�yi � ÃB�yi� ÿ

Ãm

2
� ÃG � 1�

� �
�11�

where ÃA�y� � ÃF�y� ÿ � ÃG � 1� =2 and ÃB�y� � SswiyiIfyi $ yg = ÃN. See the Appendix for

details.

3.5. The polarization curve

In order to formalize the concept of polarization, Foster and Wolfson (1992) constructed a

curve which shows, for any population percentile, how far its income is from the median.

A larger value of the polarization curve ordinate implies a larger `spread' of the distribu-

tion from the middle, indicating a smaller middle class.

For a variable y with a given distribution F�y� Foster and Wolfson (1992) de®ned the

polarization curve ordinate by

B�p� �

�p

0:5

Fÿ1
�q� ÿ m

m
dq

���� ����
which can also be written in a simpler form

B�p� � 0:5 ÿ p �
m

m
�L�p� ÿ L�0:5��

��� ��� 0 # p # 1 �12�

where L�p� and m were previously de®ned as the Lorenz curve ordinate and the mean,

respectively, and m is the median, m � inffyi [ UjF�yi� $ 0:5g. In terms of the EE

method, the polarization curve can be de®ned as a solution to the equation

U1�B�p�;m; yp� �
X

U

yi

m
�Ifyi # ypg ÿ Ifyi # mg� ÿ B�p� � 0:5 ÿ p

h i
� 0 �13�
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where the nuisance parameters yp and m are solutions to the system of equationsX
U

�Ifyi # ypg ÿ p� � 0 0 # p # 1

X
U

�Ifyi # mg ÿ 0:5� � 0

8>><>>:
The estimate of B�p� based on a complex sample is of the form given by (12) with

parameters L�p�, m, and m replaced by their estimates.

An outline of the derivation for the polarization curve is presented in the Appendix.

Here we give the ®nal form of the u� variate

u�
i �

1

ÃN Ãm
�� Ãm ÿ yi�Ifyi # Ãmg � �yi ÿ

Ãyp�Ifyi # Ãypg

� Ãypp ÿ
Ãm

2
ÿ

ÃB�p� ÿ 0:5 � p

Ãf � Ãm�
�0:5 ÿ Ifyi # Ãmg � ÃmÃf � Ãm��

�
�14�

where Ãf � Ãm� is an estimate of the density function at the median. Estimation of the density

function at estimated quantiles was discussed by Binder and KovacÆevicÂ (1995).

3.6. The polarization index

Using the analogy with the Lorenz curve and the Gini index, Foster and Wolfson (1992)

considered the area below the polarization curve as a summary measure of the polarization

and named it the polarization index. A perfectly polarized population is divided into equal

halves, each having just one of two possible values of income, the minimum or the

maximum. If median income in this case is de®ned as the middle point between minimum

and maximum (a slight departure from the usual de®nition of the median), the polarization

curve is then a horizontal line with intercept 1/2 and the point of discontinuity at the 50th

percentile, giving the value of the polarization index of 1/2. If there is no polarization,

everyone has the same income. The polarization curve is the [0,1] segment of the horizontal

axis and the corresponding polarization index is zero. Therefore, the polarization index takes

values between 0 and 1/2, and its standardized version is the previous one multiplied by 2.

The standardized polarization index, as introduced in Foster and Wolfson (1992), is

P �
T

2
ÿ G

� �
m

m

where T � �mU
ÿ mL

�=m with m, mL, mU equal to the population mean income, the mean

income for the population below the median, and the mean income for the population

above the median income, respectively. As before, G is the Gini index and m denotes

the median income.

Since m � �mU
� mL

� =2, the polarization index can be written as

P �
1

m
�m ÿ mL

ÿ mG�

�
1

Nm

X
U

yi�1 ÿ 2Ifyi # mg ÿ G�
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or as the solution to the equation

U1�P;m;G� �
X

U

1

m
yi�1 ÿ 2Ifyi # mg ÿ G� ÿ P

� �
� 0 �15�

It is estimated as

ÃP �
1

ÃN Ãm

X
s

wiyi�1 ÿ 2Ifyi # Ãmg ÿ ÃG�

where Ãm � inffyi [ sj ÃF�yi� $ 0:5g and ÃG is given by (10).

The variance of the polarization index is estimated by (4) with u�
i de®ned as

u�
i �

2

Ãm
� Ãm ÿ yi� Ifyi # Ãmg ÿ

1

2

� �
ÿ ÃA�yi�yi � ÃB�yi� ÿ

ÃG � 1

2
Ãm �

ÃG

2
yi

� �� ��
�

ÃP

ÃmÃf � Ãm�
Ifyi # Ãmg ÿ

1

2

� �
ÿ ÃP

�
= ÃN

where ÃA�y� and ÃB�y� are de®ned in (11), and Ãf � Ãm� is an estimate of the density function at

the median. The details of the derivation of u�
i for the polarization index are given in the

Appendix.

4. Illustration

The EE methodology was applied to estimate the standard errors of estimates of several

income inequality measures using a ®le on the earnings of all effective labour force

participants aged 18 to 64 in 1991. An effective labour force participant is an individual

with annual labour income of at least 5% of the average wage. Data were collected by the

Canadian Survey of Consumer Finance (SCF) in April 1992. The SCF is an annual supple-

ment to the monthly Canadian Labour Force Survey, which is based on a strati®ed, multi-

stage sample of households. Approximately 40,000 households provided detailed income

information for individuals 15 years of age or older. The data set used for this illustration

contained 50,701 individuals, situated in 4,201 clusters (PSU's), allocated to 1,139 strata.

Attached to each record is an individual survey weight which is an adjusted sample

weight; this allows us to compute the standard errors for estimates of interest.

The point estimates of the income inequality and polarization measures, their standard

errors and the corresponding coef®cients of variation are presented in Table 1. An analysis

of the unweighted data reveals the heavy right skewness and the extreme kurtosis of the

data distribution. This may explain the large standard errors of ÃCV and ÃCV 2 which are

sensitive to large income values. Also, the polarization index exhibits sensitivity to the

data spread to the right. On the other hand, most of the variability of the exponential

measure comes from the low income values which are concentrated in a relatively small

range. The Gini index is robust to extreme observations and depends primarily on the

variability in the middle of the distribution. This may explain the small standard errors

of the latter two measures. The Lorenz curve ordinates were found to have smaller coef®-

cients of variation than the polarization curve ordinates. This difference can be partly

attributed to the contribution of the estimated density function at the median used in the
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variance estimation of the polarization curve ordinates and the polarization index, and

partly to the sensitivity of these measures to large observations.

As mentioned in the introduction, the main goal of this article is to provide estimators

for the sampling variance of different measures of income inequality using the EE method.

However, further insight into the properties of these variance estimators can be obtained

53KovacÆevicÂ and Binder: Variance Estimation for Measures of Income Inequality and Polarization

Table 1. Canadian SCF 1991: Earnings of all effective labour force participants

Measure Estimate Standard error and CV%

Mean 26,297 184.10 0.70
Median* 22,392 226.78 1.01
CV 2 0.7608 0.0429428 5.64
CV 0.8722 0.0246164 2.82
Gini index 0.4122 0.0027141 0.66
Exponential measure 0.4603 0.0011879 0.26
Polarization index 0.1966 0.0021153 1.07

p Lorenz curve ordinates Polarization curve ordinates

ÃL�p� Standard error and ÃB�p� Standard error and
CV% CV%

0.050 0.0044 0.0000537 1.22 0.2083 0.0014237 0.68
0.100 0.0117 0.0001615 1.38 0.1669 0.0013351 0.79
0.150 0.0226 0.0002809 1.24 0.1297 0.0012150 0.93
0.200 0.0372 0.0004283 1.15 0.0968 0.0010588 1.09
0.250 0.0550 0.0005876 1.06 0.0677 0.0008773 1.29
0.300 0.0772 0.0007777 1.00 0.0438 0.0006725 1.53
0.350 0.1060 0.0009556 0.90 0.0276 0.0004672 1.69
0.400 0.1344 0.0011496 0.85 0.0110 0.0002898 2.63
0.450 0.1740 0.0013513 0.77 0.0075 0.0001106 1.47
0.500 0.2102 0.0015297 0.72 0.0000 0.0000000 ±
0.550 0.2601 0.0017332 0.66 0.0086 0.0002297 2.67
0.600 0.3049 0.0018900 0.61 0.0112 0.0004579 4.08
0.650 0.3673 0.0020772 0.56 0.0345 0.0009332 2.70
0.700 0.4187 0.0022240 0.53 0.0449 0.0012915 2.87
0.750 0.4869 0.0023889 0.49 0.0750 0.0018808 2.50
0.800 0.5634 0.0025559 0.45 0.1148 0.0025855 2.25
0.850 0.6423 0.0026927 0.41 0.1575 0.0033394 2.12
0.900 0.7279 0.0028099 0.38 0.2080 0.0042041 2.02
0.950 0.8342 0.0028583 0.34 0.2828 0.0053746 1.90
0.960 0.8608 0.0028575 0.33 0.3041 0.0056776 1.86
0.970 0.8843 0.0027994 0.31 0.3217 0.0059496 1.84
0.980 0.9126 0.0026378 0.28 0.3449 0.0063331 1.83
0.990 0.9449 0.0024158 0.25 0.3729 0.0068331 1.83
0.995 0.9647 0.0022467 0.23 0.3911 0.0071469 1.82
0.997 0.9740 0.0020830 0.21 0.4000 0.0073278 1.83
0.998 0.9794 0.0018379 0.18 0.4054 0.0074922 1.84
0.999 0.9871 0.0011442 0.11 0.4134 0.0078741 1.90
1.000 1.0000 0.0000000 ± 0.4276 0.0083695 1.95

*The standard error of the median is also obtained by the EE method (Binder and KovacÆevicÂ 1995).



through an empirical comparison with some other estimators commonly used. A

simulation study designed to compare several resampling methods with the EE method

for variance estimation of income inequality measures was conducted at Statistics Canada.

The results are reported in KovacÆevicÂ, Yung, and Pandher (1995). The study focused on

income inequality measures that are functions of the quantiles, and did not cover the

coef®cient of variation, the exponential measure, or the ordinates of the polarization curve.

In the following we summarize some of the relevant ®ndings in the simulation study.

Five different methods for variance estimation were compared: jackknife ``delete-one-

cluster,'' the grouped balanced half-sample method, repeatedly grouped balanced half-

samples, the bootstrap and the Taylor linearization via the EE approach. The underlying

population was the microdata ®le from the Canadian Survey of Consumer Finance in 1988.

Ten thousand samples were drawn from the micropopulation using a cluster sample design

with the selection probabilities proportional to size. The accuracy and the precision of the

considered methods were evaluated by their relative biases and relative stability.

For the Lorenz curve ordinates the EE method showed very small negative relative bias,

in the range between ÿ0:4% for the quantile p � 0:6 and ÿ5:2% for p � 0:95. For the

same p-values, the relative bias of the jackknife estimator was 20.49% and 39.02%,

respectively. However, the bootstrap estimator exhibited the smallest relative bias at these

points, 0.3% and ÿ1:91%. Concerning stability, the EE method along with the bootstrap

performed the best.

Similar results were obtained for the polarization index. The relative bias of the EE

estimator was computed as 4.2%, whereas for other methods it varied between 2.9%

(for the bootstrap) and 95.4% for the jackknife. In terms of stability, the EE and the boot-

strap estimator performed similarly and outperformed other methods.

For the variance estimation of the estimate of the Gini index all methods considered

performed similarly: all showed a small negative relative bias, in the range of ÿ0:7%

and ÿ2:2% and had stability in the range 87.0% to 99.2%. The EE method had a relative

bias of ÿ1:5% and a stability of 87.0%:

Results of the study con®rm the advantage of using the EE method over most

resampling methods considered for variance estimation of the Lorenz curve ordinates,

the polarization and the Gini index. The exception was the bootstrap method which

performed slightly better. Although, the polarization curve was not studied empirically,

its similarity to the Lorenz curve implies that the performance of the EE method should

be acceptably good.

5. Summary

Variance estimation of complex statistics such as measures of income inequality can be

done by the method of estimating equations. The advantage of this approach is that it

can be used under a wide class of sampling designs and does not require intensive

computations, which most of the resampling alternatives require. In order to estimate

measures of income inequality, one must ®rst compute the ui variates (given in the second

column of Table 2) and then compute their total values after multiplying by the

corresponding weights. To estimate the variance of such estimates one needs to compute

the u�
i values (summarized in the third column of Table 2) and substitute them into (4).
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The extension of this method to comparisons between domains and comparisons over

time are straightforward since we have reformulated the problem to one of estimating

variances of linear statistics in the Godambe (1955) class, allowing the use of standard

methods applied to these linear statistics. Of course all the complexities arising from

having overlapping units over time would have to be accounted for.

6. Appendix

Detailed derivation of the u� variates

6.1. The exponential measure

The ®rst derivatives of U1�EX; m� and U2�m�, given by (8), are

J1;EX � ÿN; J1;m �
1

m2

X
U

yi exp�ÿyi =m�; and J2;m � ÿN

After substituting into (7) and using the estimates instead of parameters

u�
i �

1

ÃN
�exp�ÿyi = Ãm� ÿ ÃEX � �yi ÿ Ãm�ÃJ1; Ãm = ÃN�

where

ÃJ1; Ãm �
1

Ãm2

X
s

wi yi exp�ÿyi = Ãm�

6.2. The Gini index

The corresponding ®rst derivatives are J1G � ÿN, J1l � �f2yi =mgi[U=io
;ÿG=m�1´N , where

i0 is the label of the maximum yi, J2G � 0N´1, and J2l � ÿNIN´N , where I is the identity

matrix.
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Table 2. Summary of the linearized terms for the point estimation (wi) and variance estimation (ui)

Measure ui u�i

CV 2
� yi ÿ Ãm�2= ÃN Ãm 2

� �� yi = Ãm ÿ 1�2 ÿ �2yhci = Ãm ÿ 1� ÃCV 2
� = ÃN

CV �� yi = Ãm ÿ 1�2= ÃCV ÿ �2yi = Ãm ÿ 1� ÃCV� =�2 ÃN�

Gini index �2 ÃF� yi� ÿ 1� yi =� ÃN Ãm� 2� ÃA� yi� yi � ÃB� yi� ÿ Ãm� ÃG � 1� =2� = � ÃN Ãm� (*)

Exponential �1= ÃN � exp�ÿyi = Ãm� �� yi ÿ Ãm�ÃJ1; Ãm = ÃN � exp�ÿyi = Ãm� ÿ ÃEX� = ÃN (**)
measure

Polarization yi�1 ÿ 2Ifyi # Ãmgÿ ÃG� = � ÃN Ãm� 2
Ãm
�� Ãm ÿ yi��Ifyi # mg ÿ 0:5�

�
index

ÿ�A� yi�yi � B� yi� ÿ � ÃG � 1� Ãm =2 � ÃGyi =2��

�
ÃP

Ãm Ãf � Ãm�
�Ifyi # Ãmg ÿ 0:5� ÿ ÃP

o
= ÃN

Lorenz curve yiIfyi # Ãypg = � ÃN Ãm� �� yi ÿ
Ãyp�Ifyi # Ãypg � pÃyp ÿ yi

ÃL �p�� = � ÃN Ãm�

Polarization f0:5 ÿ p � yi�Ifyi # Ãypg ÿ Ifyi # Ãmg� = Ãmg = ÃN 1
ÃN Ãm

f� Ãm ÿ yi�Ifyi # Ãmg � � yi ÿ
Ãyp�Ifyi # Ãypg �

Ãypp ÿ Ãm=2
curve

ÿ� ÃB�p� ÿ 0:5 � p��0:5 ÿ Ifyi # Ãmg � Ãm Ãf � Ãm�� = Ãf � Ãm�g

(*) A�y� � ÃF�y� ÿ
ÃG�1

2
and B�y� � SswjyjIfyj $ yg= ÃN

(**) ÃJ1; Ãm � Swiyi exp�ÿyi = Ãm� = Ãm 2



Substituting into equation (7) and replacing parameters with their estimates, we obtain

u�
i �

2

ÃN Ãm
ÃA�yi�yi � ÃB�yi� ÿ

Ãm

2
� ÃG � 1�

� �
where ÃA�y� � ÃF�y� ÿ � ÃG � 1� =2 and ÃB�y� � Sswi yi Ifyi $ yg= ÃN

6.3. Polarization index

We present the derivation of the u� variates for the polarization index in full detail because

it involves approximations that are speci®c for quantiles and functions of them. The two

approximations for the ®nite population quantiles yp's important for the subsequent

development are

Ãyp ÿ yp <
1

f �yp�
�p ÿ ÃF�yp��

�
X

U

wi�s�
1

ÃNf �yp�
�p ÿ Ifyi # ypg� �A1�

where f �yp� is the value of the density function at yp. This is an extension of the Bahadur

representation (Bahadur 1966) for a quantile to the ®nite population case.

Continuing, let m�a� � �1=N�SUyiIfyi # ag. Note that the previously introduced mL, the

mean of the lower half of the population, is equal to 2m�m�. Also, the Lorenz curve ordinate

at p is equal to m�yp�=m. The following approximation holds for quantiles

m�Ãyp� ÿ m�yp� �
1

N

X
U

yi�Ifyi # Ãypg ÿ Ifyi # ypg�

< yp f �yp��
Ãyp ÿ yp�

<
X

U

wi�s�yp�p ÿ Ifyi # ypg� = ÃN; as Ãyp ! yp �A2�

The approximation (A2) appears in a more general form in Binder and KovacÆevicÂ (1995).

The estimate of the equation (15) can be expressed as

0 � ÃU1� ÃP; Ãm; ÃG�

�
X

U

wi�s�
yi

Ãm
�1 ÿ 2Ifyi # Ãmg ÿ ÃG� ÿ ÃP

h i
< N�P ÿ ÃP� �

X
U

yi

Ãm
�1 ÿ 2Ifyi # Ãmg ÿ ÃG� ÿ

yi

m
�1 ÿ 2Ifyi # mg ÿ G�

h i
�
X

U

wi�s�
yi

m
�1 ÿ 2Ifyi # mg ÿ G� ÿ P

h i
Approximating the function yi = Ãm around the median m by its ®rst order Taylor expansion

yi =m ÿ yi� Ãm ÿ m� =m2, substituting into the expression above, and simplifying, we have the

following

ÃP ÿ P< ÿ
1

m
� ÃmL

ÿ mL
� ÿ

m

m
� ÃG ÿ G� ÿ

Ãm ÿ m

m2
�m ÿ ÃmL

ÿ m ÃG�

�
X

U

wi�s�
yi

m
�1 ÿ 2Ifyi # mg ÿ G� ÿ P

h i
=N �A3�
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Replacing ÃmL with � ÃmL
ÿ mL

� � mL and ÃG with � ÃG ÿ G� � G in the third term of (A3) and

then removing the mixed products from approximation (A3) as higher order terms, we

arrive at the following linearization

ÃP ÿ P< ÿ
1

m
� ÃmL

ÿ mL
� ÿ

m

m
� ÃG ÿ G� ÿ

P

m
� Ãm ÿ m�

�
X

U

wi�s�
yi

m
�1 ÿ 2Ifyi # mg ÿ G� ÿ P

h i
=N

Finally, we use (A1), (A2), and (11) to approximate the differences Ãm ÿ m, ÃmL
ÿ mL, and

ÃG ÿ G, respectively

ÃP ÿ P <
X

U

wi�s�u
�
�yi;P;m;G�

�
X

U

wi�s�
2

m
m ÿ yi �

P

2 f �m�

� �
Ifyi # mg ÿ

1

2

� ���

ÿ A�yi�yi � B�yi� ÿ
G � 1

2
m �

G

2
yi

� ��
ÿ P

�
=N

This expression provides the ®nal form of the u�
i variate as given by (16).

6.4. The polarization curve

The polarization curve ordinates are given by expression (12). To estimate their variance

we proceed as in the case of the polarization index, starting with the decomposition of the

estimate of (13)

0 �
X

U

wi�s�
yi

Ãm
�Ifyi # Ãypg ÿ Ifyi # Ãmg� ÿ ÃB�p� � 0:5 ÿ p

h i
< N�B�p�ÿ ÃB�p�� �

X
U

yi

Ãm
�Ifyi # Ãypgÿ Ifyi # Ãmg� ÿ

yi

m
�Ifyi # ypg ÿ Ifyi # mg�

h i
�
X

U

wi�s�
yi

m
�Ifyi # ypg ÿ Ifyi # mg� ÿ B�p� � 0:5 ÿ p

h i
Approximating the function yi = Ãm around the median m by its ®rst order Taylor expansion

yi =m ÿ yi� Ãm ÿ m� =m2, and using similar substitutions as in the case of the polarization

index, we obtain the difference ÃB�p� ÿ B�p� as

ÃB�p� ÿ B�p� <
X

U

wi�s�u
�
�yi;B�p�;m; yp�

�
X

U

wi�s�
1

Nm

�
�m ÿ yi�Ifyi # mg � �yi ÿ yp�Ifyi # ypg

� yp p ÿ
m

2
ÿ

B�p� ÿ 0:5 � p

f �m�
�0:5 ÿ Ifyi # mg � mf �m��

�
Finally, to estimate the variance of ÃB�p� we use formula (4) for the variance of total and

u�
i variates given by (14).
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