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Variance Estimation for the Regression Imputed
Horvitz-Thompson Estimator

Jean-Claude Deville' and Carl-Erik Sdrndal

Abstract: Imputation has found widespread
use in surveys with missing data but can
lead to incorrect inferences, e.g., invalid
confidence intervals, unless care is exer-
cised. This paper develops a procedure for
valid variance estimation in surveys where
regression imputation is used for the miss-
ing values. The imputed values are derived
from the fit of a multiple regression model,
with a multivariate auxiliary variable as pre-
dictor. Features of this new procedure are:
(i) it is based on single value imputation
(as opposed to the computationally more

1. Introduction

Rising nonresponse rates have made the
treatment of survey data increasingly
dependent on imputation and consequently
on a proper treatment of the effects that
imputation has on the survey results, espe-
cially on their accuracy. This paper dis-
cusses single value regression imputation.
That is, if y, is a missing observation,
impute y;, = X;(,BA, where x; is a known vec-
tor of predictors for unit £ and B is derived
from the fit of a multiple regression model
to data on the respondents. We propose a
practical method for variance estimation
when such imputation is used.
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demanding multiple imputation); (ii) the
variance estimation is valid for an arbitrary
probability sampling design and for an
arbitrary response mechanism of the
unconfounded type; and (iii) the calcu-
lation of the variance estimate can be
carried out with the standard formulas pro-
grammed in the existing computer packages
for survey data.

Key words: Nonresponse; imputation; aux-
iliary information; unconfounded response
mechanism; model assisted inference.

A commonly held view of imputation is
that it can successfully serve to patch up
the sample. One seeks to reestablish the
situation that would have prevailed if all
units selected for the sample had
responded. This outlook has both strengths
and weaknesses. Working with a complete
data set has computational advantages
even if some data are artificial. It is an
unavoidable weakness that the inferences
are only as sound as the models that are
invoked, critically or uncritically, in the
fabrication of imputed values.

Point estimation is reestablished in the
sense that if 7 is the population total to be
estimated, one typically uses the same esti-
mator formula 7 as in the case of 100%
response, and 7 is computed on the data
set after imputation, that is, the data set
consisting in part of actually observed
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data (for the respondents), in part of
imputations (for the nonrespondents). This
is current practice in many survey
organizations.

In a similar spirit one may try to reestab-
lish variance estimation. Here the problem
is more intricate. A wusually incorrect
approach is to take V, the standard vari-
ance estimator formula appropriate for
100% response, simply compute it on the
data set after imputation and use it as an
indicator of the precision attained in the
survey. A naive user may be tempted to do
this, especially since standard formulas are
already programmed in existing software
for survey data. That this can be com-
pletely misleading has been recognized for
some time. The standard formulas, com-
puted on data containing both actual
observations and imputations, will often
lead to considerable underestimation of
the variance.

Multiple imputation methods, promoted
by Rubin (1987), are perhaps the best
known remedy at this point in time.
Although theoretically sound, multiple
imputation requires considerable data
handling and storage and is not ideal
in repeated surveys carried out in
national statistical agencies, where rapid,
standardized computation is required to
meet deadlines in official statistics
production.

We work in this paper with single value
imputation. Given that statistical agencies
employ a variety of sampling designs in
their surveys, our aim is to present a
method with enough generality that it can
be applied to any probability sampling
design.

Although naive use of a standard vari-
ance estimator formula is incorrect, the
question arises: With a more sophisticated
use of the standard formula, can we still
profit from existing computer software and
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arrive at a valid variance estimate in the
case of imputation? We show that with
single value regression imputation it is
possible to embed the standard formula in
a series of computations leading to a valid
variance estimate. Thus with little extra pro-
gramming, existing software can be used, a
considerable step forward. Computation-
ally our method entails modifying standard
software by going into an ‘“‘imputation
mode” for variance estimation.

There is a considerable literature on uses
of regression methods and auxiliary infor-
mation for handling nonresponse. One
approach is modeling of the response
mechanism. Ekholm and Laaksonen
(1991) use a logistic regression model to
estimate unknown response probabilities.
Binder (1991) concentrates on qualitative
variables of interest and uses log-linear
models to explain the nonresponse mech-
anism. Another use of auxiliary informa-
tion is to form regression estimators; these
have been found effective for reducing non-
response bias, see Bethlehem (1988) and
Sidrndal and Swensson (1987). Finally,
imputation is often carried out with the
aid of a regression fit; Hinde and Chambers
(1991) recently studied regression imputa-
tion strategies and the use of the iterative
EM-algorithm.

The approach in this paper is in the spirit
of Sirndal, Swensson and Wretman (1992),
in particular the nonresponse chapter in
that book, but goes further. Ideally, the
inference should be model free, but with
nonresponse this goal cannot be realized.
Instead the inference becomes model
assisted, which implies a desire to stay
close to the classical randomization theory
approach. Nonresponse is treated as the
second phase of selection incurred after
the sample selection. If there is no non-
response, the formulas should reduce to
those that everyone recognizes as
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“standard” design based formulas for the
case of complete response.

The work reported in this paper was
inspired in part by efforts at Statistics
Canada to improve the variance estimation
procedure for cases of single value imputa-
tion. It extends the method in Sdrndal
(1990, 1992), who gave detailed results for
ratio imputation under simple random
sampling, which is a special case of the
more general method developed in this
paper. The ratio imputation case is
revisited in the following (Sections 3, 5-7)
to illustrate how our more general method
unfolds. Also at Statistics Canada work is
underway to study jackknife variance esti-
mation in the presence of imputation, see
Rao (1992) and Kovar and Chen (1992).

2. Complete Response and Standard
Software for Variance Estimation

We consider a finite population U =
{1,...,k,...,N}. Denote by y, the true
value for the unit £ of a variable of interest
y. The objective is to estimate the y-total
t=> yy From U, a probability sample
s is drawn with known probability p(s).
We say that the survey has complete
response if the entire sample y-data set
s = {yi: k € s} is observed and available
for estimation purposes. An entirely design
based inference is possible in this case
using the inclusion probabilities m; =
>ssxp(s), k=1,...,N, which are
assumed to be known and positive. The
Horvitz-Thompson estimator 7= Y, wy
with  weights w, =1/m,  estimates
t =3y yi without bias. (If M is a set of
units, M C U, let us write Y, to denote
> kem> for example, >y yi =D kev Vi)
The design based variance of 7 can be
expressed as a quadratic form, V,(yy) =

> uDweyiye, where yy ={y: ke U}
denotes the y-data for the entire population
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and Ay, = s/ (memy) — 1. Here, 7y, is the
probability that both k and ¢ are included
the sample, and m, = m.. (If M is a set of
units, > >3, will be our shorthand for the
double sum 3> yc s senr-) This variance
is estimated without bias from the sample
data y;={y: kes} by Vp(ys) =
3> s Areyiyes where Ay = Dy /mrs =
1/(myme) = 1/mge.

In particular, for simple random sam-
pling without replacement (SRSWOR)
with the sampling fraction f = n/N, then
Age=f""=1 and Adu=f""(f"-1
for all k; Ay =—(f'=1)/(N—1) and
Ay =—fNf ' =1)/(n=1)forall k # ¢.

The  variance estimate Vp( V) =
>3 s A yieye is computed routinely for
various sampling designs with software
available in most survey organizations, for
example, SUPERCARP (Hidiroglou,
Fuller, and Hickman 1980), SESUDAAN
(Shah 1981) and STRATOR (Lasarre
1989). Such software is of course an asset
but uncritical use can lead the analyst
astray in surveys with nonresponse, unless
he or she is aware of the pitfalls with impu-
tation. The software empowers the analyst
to let the formula 171,(‘) operate mechani-
cally on any data set z; = {z;: k € s} for
which a value z; has been specified for
every k €s. This operation yields the
number Vp(zs). When the data set z; is com-
posed in part of actual observations and in
part by imputations Vp(zs) can be a com-
pletely misleading indicator of precision.
We call Vp(~) the standard formula and
show in the following how it can be used
to calculate a proper variance estimate
when the void caused by missing values is
filled by single value regression imputation.

3. Regression Imputation

Now consider nonresponse and imputaﬁon.
We then call s the desired sample. The
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sampling design, p(s), expresses the known
probability of drawing the desired sample
s from U; =, and m;, denote the known
inclusion probabilities under this design.
The set of respondents is denoted by r, the
set of nonrespondents by o =s—r. The
response  mechanism, denoted  ¢(rls),
expresses the unknown conditional prob-
ability that the subset r responds, given s.
We observe y, for k €r only. That is,
v, = {y: k€r} are observed data and
Yo = {yx: k € 0} are missing data requiring
imputation.

Denote by j; the imputed value for a unit
k € 0. In this paper, J, is a regression
prediction derived from a model fit
with the aid of an auxiliary value X, a J-
dimensional vector available for all k € s.
The model, denoted &, states that for k € U

Vi =XiB+ €
Ee(e) =0, Ee(e) = 0k = 0"XicA,
Ec(exer) =0 (k#£7). (3.1)

Here, 3 is an unknown regression coef-
ficient vector and A a vector of specified
constants, both of dimension J. To impose
the variance structure U,zc = azxfc)\ does not
severely restrict the range of possible
imputations. Two simple models of this
type are y, =[0+¢ with Eg(ei) =d?,
which leads to imputation by the
respondent mean, and y; = x; 0 + ¢ with
Eg(ei) = o’x;, which leads to ratio
imputation, as pointed out at the end of
this section. In the following we return
repeatedly to these two models to show
the progression of our argument. The
example with mean imputation serves
mainly to confirm that our approach leads
to the variance estimator that most would
agree is the “standard one” for this simple
case; in practice, mean imputation is too
elementary to be of great interest. How-
ever, it is clear that the model formulation
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(3.1) covers a wide range of possibilities
for imputation with regression. All these
can be treated according to the general
method that we develop. Compared to jack-
knifing and other resampling methods the
computation is not extensive even for multi-
ple regression models. The computations
are carried out by closed form expressions
according to an algorithm summarized in
Section 9.

The unknown 3 is estimated from respon-
dent data by weighted least squares

B, =T, Z X Vi ok (3.2)
r

where T, , = Y, axXpX/ o2, a J x J matrix
whose inverse is assumed to exist and the
ap, ke€r, are known weights. Because
0% = o*x} A, and X is known, we can calcu-
late B, without knowing o?. (Later we need
to estimate o%; see Section 7.) The subscript
a refers to the weighting system, for which
more than one viable alternative exists.
Two immediate options at the statistical
analyst’s disposal are:

i. a; = wy. This choice can be justified
by the argument that when the
response is complete, this weight-
ing yields a B, which is design con-
sistent  for B = (Syxx}/o7)”!
SUuXe yi/o%, which in turn is the
best linear unbiased estimator of 3
under the model if the entire popu-
lation U was observed;

ii. a; = 1 for every k. This choice can be
justified by the fact that it produces
the best linear unbiased estimator of
B under the model. That is, the weight-
ing a; = 1 is entirely model inspired.

The weighting a;, = 1 minimizes the vari-
ance under the model of B, viewed as an
estimator of 3. Thus a; =1 is better from
this limited perspective than a; = wy. But
our main interest lies in estimating the
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variance (conceived in the more intricate
“Epq sense” explained in Section 4) of i,
given by (3.3) viewed as an estimator of
the total = >y y;. With this objective,
the choice between a; =1 and a;, = wy, is
far from obvious. Attempting to use analy-
tical comparisons to settle the issue is likely
to fail because of the complexity of the
expressions. However, we do not foresee
that our method for estimating the var-
iance of 7, will be so sensitive to the choice
of the a;. To opt for a;, = 1 is not unreason-
able, in view of the model’s dominating
importance for the imputation stage. Also
the choice a; = 1 happens to yield mathe-
matically more tractable formulas, and it
dominates in the following. Note that for
a self-weighting design, all w, = 1/m; are
equal, and (i) and (ii) give the same result.

If k € o, the value j, = x}B, is imputed.
The y-data after imputation, denoted
Yes = {Yer: k € s}, are such that

Vi ifker

Yok = {yk —xB, ifkeo
Imputed values must be flagged for identifi-
cation in the data file.

It is current practice to estimate
t=>Ypyyr by the standard formula
{ = 3", we ¥k, computed on data after impu-
tation. That is, the estimator after imputa-
tion is

fo=) Weyek =D _ Widk+ Y Wik
S r o
(3.3)

This is the regression imputed Horvitz-
Thompson estimator. It has the important
property of reducing to the ordinary
Horvitz-Thompson estimator, 7 = Y s wy Ji,
in two cases:

1. if there is no nonresponse, that is,
r=s;

ii. if the imputations are perfect substi-
tutes, that is, y, = y, for every k € o.
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In the formula (3.3), an imputed value is
thus treated as a real observation in that
its  weight remains unchanged at
wy = 1/m;. This expresses the survey statis-
tician’s belief that no bias is introduced by
creating artificial values from the model &.
This belief seems to be the prime statistical
reason why estimates calculated in part
from made-up, artificial values should be
accepted at all in producing important
national statistics. There is faith in the
imputation method; statistically speaking
this translates as an assumption that no
bias is introduced.

Clearly alternatives to (3.3) could, and
should perhaps, be entertained. To fall
back on the formula for complete response
is convenient; existing software can be
used directly. But instead one could try to
construct “‘the best possible estimator” (in
some well defined sense) of 7, given the
reduced data set remaining after nonre-
sponse. This would not necessarily be the
regression imputed Horvitz-Thompson esti-
mator given by (3.3). However, (3.3) repre-
sents such an important current practice
that it is necessary to closely examine the
question of how variance estimation is to
be carried out with this estimator. To
answer this question is our goal in this
paper.

An alternative view of (3.3) is that it
embodies a reweighting of the respondent y-
values. We can write 7, = Y, wj yx, where
Wi = wi + (Creowexe) T ateXi/or s a
transformation of the original weight wy.

Let us illustrate by means of the two
simple examples.

Mean imputation. Assume SRSWOR
with w, = N/n for all k. Suppose no auxili-
ary values are available to impute by, so
pose the extremely simple model £ given
by yi = B+ ¢ with Eg(e;) = 0. That is,
x; =1 for all k and A =1 in the general
model statement (3.1). From (3.2), with
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a, =1, we get B, =7, =Y, yx/m, where
the number of respondents, m, is random.
(Since wy, is constant in this case, the option
a = wy, would lead to the same result.) For
every k € o = s — r, impute the respondent
mean, y; = y,. From (3.3), the estimator
of t becomes 7, = N j,.

Ratio imputation. Assume SRSWOR with
wi = N/n for all k. Suppose x; is a positive
scalar known for every k € s. Let the model
£ be yr = xi B+ ¢ with Eg(ei) = o°x;. Let
us take A =1in (3.1) and g, =1 for all £
in (3.2), yielding B, = 7,/%,. (a; = wy leads
to the same result.) The imputed values
are y = x; y./X, for k € o, hence the name
ratio imputation. The estimator of ¢ result-
ing from (3.3) is {, = NX,,/%,. (The index
r or s on X or y specifies the set on which
the arithmetic mean is calcﬁlated, SO
X, =Y., xx/m, X, =3 ¢ x;/n, and so on.)

To treat imputed values as real obser-
vations may work for point estimation, if
the model is realistic, but will usually be
misleading for variance estimation, even
when the model holds. The standard for-
mula for variance estimation, computed
on the complete response data, y, = {yx:
kes}, would have given Vp( V) =
S s Akeyiye, Where Ay =1/(mms)—
1/m,. Computation on the y-data after
imputation, y,, = {y.x: k € s}, gives instead

Z Z Akt Yok Vot

To use Vp( Yes) by itself as indicator of the
precision of 7, is again to act as if imputed
values are as good as observed values. But
(3.4) underestimates the true variance,
often dramatically, especially with high
nonresponse. Thus a confidence interval
computed with the aid of (3.4) will often
be much too short for the confidence level
aimed at. This is a well known fact, and
multiple imputation methods will, at least
for simpler sampling designs, improve the

»(Ves) (3.4)
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situation. However, single (rather than
multiple) imputation is attractive for rou-
tine statistics production in national statisti-
cal agencies. In this case terms must be
added to I;'p( Yes)- We now derive these
terms and show how they can be computed.

4. Variance and Variance Estimation

The desired sample s is selected with the
known probability p(s). The response
mechanism, ¢(r|s), represents the usually
unknown probability that the set r
responds, given s. A general form of the
response mechanism is g(:|s) = g(:|s, y,,
X;). That is, it depends on s, on the x-data
X, ={x;: k€s} and on the py-data
ys = {yx: k € s}. In particular, if it depends
on X, but not on y, so that
q(-s) = q(+|s, x;), then we call the mechan-
ism unconfounded, resembling terminol-
ogy in Rubin (1983). Put differently, to be
unconfounded, g(r|s) must not depend on
the residual set e, = {¢: k €s} in the
model £ in (3.1) used to create imputed
values. Let E¢, E, and E, be the expectation
operators with respect to &, p(s) and g(r|s),
respectively. We use the well known antici-
pated variance, EngEq(f. - 1)2, to assess
the precision of 7,.

What unbiasedness, if any, can be claimed
for the estimator 7, endorsed by current prac-
tice? It is in fact {pg-unbiased, that is,
E¢E,E (i, —t) =0, under two conditions
specified below. To see this, decompose the
total error, 7, — t, into sampling error,  — ¢,
and error due to imputation 7, — #, where
{ =3 wiyx is the Horvitz-Thompson esti-
mator for complete response. We have

€pg-bias (i) = E¢E,E (i, — 1)
= Eng(i— t)+E§Equ(i. - [A)
The first term, E¢E,(7 — 1), is zero, because

E,(i —t) = 0 by the fact that the complete
response Horvitz-Thompson estimator 7 is
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design unbiased for ¢. To claim that the
second term, E.E,E,(f, —1), is zero takes
two conditions:

A. the mechanism g¢(r|s) is uncon-
founded (but otherwise unknown),
and

B. the imputation model £ given by (3.1)
holds, so that the imputation error
fy — 1= =Y we(yx — %) has zero
model expectation, given any s and r.

If (A) holds, changing the order of the
operators, E¢E,E, into E,E, E,, is allowed
without affecting the value of the expecta-
tion. If (B) also holds, E¢{(7, —7)|s,r} = 0.
In words, given any s and r, the difference
between the imputed estimator 7, and the
complete response estimator 7 differs from
zero only by random error having zero
expectation under the model used to
impute. Thus, under (A) and (B),
E(E,E, (i, — i) =0; consequently, 7, is
&pg-unbiased for 1.

Note that condition (A) does not imply
that the response mechanism is of the
simple kind called uniform. A uniform
mechanism is a naive assumption implying
that all units respond with the same prob-
ability, that is, the nonresponse is not selec-
tive in any way. But numerous studies have
shown that the problem with nonresponse is
precisely that it is nonuniform, often related
to observable characteristics of the units,
such as age and sex in the case of indivi-

duals. Such nonuniform nonresponse is per- -

mitted under an unconfounded mechanism;
we can have very different response prob-
abilities for the different units, as long as
these probabilities depend on the xj-values
but not on the y,-values. In the following,
we assume that (A) and (B) apply.
Confounded response causes the problem
that B, given in (3.2) is a model biased esti-
mator of the regression coefficient 3. The
imputed values j, = x,B, for k€ o are
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thereby distorted, and both the point esti-
mator 7, and the corresponding variance
estimator suffer from bias.

Now consider the {pg-variance (or the
anticipated variance under &) of i,, that is,
FprEq(f.A— 12 Using the decomposition
to—t=({—1t)+(f,—f) and permuting
E¢E,E, into E,E,E. (allowed under
assumption A), we obtain

E¢E,Ey(fy — 1)’ = EVy + EyEy Ve

where V,=V,(yu) =32 v Deryiye is
the design based variance of 7 and

Vimpe = Ec{(fs — )2 +2(2, — 1)(i — 1)]5, 1}
(4.1)

The decomposition of the total anticipated
variance, V,,; = E¢E,E,(f, — 1), now reads

Vit = Vam + Vimp

where V,, = E;V,, called the sampling
variance, is the anticipated design based
variance for the case of complete response,
and the second component,
E,E, Ve, called imputation variance, is
the variance added through imputation.

We now construct estimators, V,,,, and
Vimp, of the components V., and V,,.
For complete response we require, as is
reasonable, thAat they reduce to Vimp =0
and I}.vam = Vp(ys) =222 s Are Yiye, the
standard formula computed on complete
response y-data.

Vimp =

a. Estimation of the sampling variance,
Veam- Mechanical calculation by the
standard formula gives the result
V,5(ves) given by (3.4). This understates
the sampling variance which is correctly
estimated by Vp(ys) =222 s Aw Yiye,
but this latter quantity cannot be calcu-

lated, so we must estimate the differ-

ence. Find C = E{ Vp(yS) - Vp(y.s)}
and estimate it by C satisfying

N

E/(C)=C. It then follows that
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~

Vo(Ves) + C will estimate Vsam Without
épg-bias: We have E.E,E {V,(yes)+
C} = E;V, = Vum, because

E¢E,E{V,(yes) + C}
= E,E{Ec(V,(yes) + C}
= E,E{E(V,(3))}
= E:E,V,(y;) = E¢Vp.

b. Estimation of the imputation vari-
ance, V. This is conceptually
simple. Find an estimator Vi, that
is model unbiased for the conditional
imputation variance Vj,, given in
(4.1). This is a standard problem
in inferential  statistics. = Then
Vimp5 will estimate V,, without
épg-bias, because E;E,E Vi, =
EyE(EcVimpe = EpEqVimpe = Vimp-

I?etails for ﬁnding C and V,-mpg such that
E.C = C and E¢Vippe = Vippe Will be given
in the next section. At this point, we sum-
marize in the form of a general principle.

Procedure for variance estimation: If con-
ditions (A) and (B) hold, a &pg-unbiased
estimator of the variance of 7, = Y s Wi Vex
is given by

Viet = Viam + Vimp‘

The sampling variance is estimated by

~

Vam = I}p(yos) + é

where 171,( Ves) 18 calculated by the standard
formula applied to the data after imputa-
tion, and C satisfying Eg(C‘ )=C=
Eg{I}p(ys) - Vp(y.s)} is added to avoid
underestimation of the sampling variance.

The imputation variance is estimated by

Vimp = Vimp¢

where V,»mpg satisfies E¢ V,»mpg = Vimpe given
by (4.1).
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5. Estimation of the Imputation Variance

We now produce explicit expressions for
Veum and Vimp. Starting with Vimp, let us
evaluate the two terms of (4.1). The first
term is

Ef{(io - i)2)|sv r} = t;,w V{(ﬁa|s’ r)to,w
+Y wiok (5.1)
o

where t,,, = >, wiX and
Vg(ﬁa|5, r) = Tr_,;Tr,aaTr_,; .

with T,, defined by (3.2) and T,, =
S, arxiXe/ o+. The second term of (4.1) is

ZEE{(i- - i)(i_ l)|S, r} =

2t Tratra +to Tratea)  (52)

where  t,, =, Xk, toww =2 0 WiXp,
traw = O, GWieXg. It is easy to see that
(5.2) is zero if the sampling design is self-
weighting (w, = constant); otherwise, (5.2)
is nonzero but ordinarily small compared
to (5.1).

Because o7 is of the form o?x}\, we con-
clude that the sum of (5.1) and (5.2) can be
written as Vi, = oG, where G can always
be computed from the sample
x-data. Thus ¢” is the only unknown requir-
ing estimation.

Simplicity is a strong point in favour
of the weighting a4, =1 in (3.2). It
leads to T,,=T,, = 02T, where T =
3, Xk X/ (X3 A), and the sum of (5.1) and
(5.2) reduces to

Vimp§ = ‘j'z{tiz,wT_—1 (ts,w + tr,w) - ti),wa_ltr,l}
(5.3)

where t;,, = > wiXgand t,; = >, X, Ifin
addition the design is self-weighting, say,
wy = W for all k, then

!
Vimpe = P w? (Z xk> T! (Z xk).
o ‘s

(5.4)
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In (5.3) and (5.4), o? is the only unknown.
What remains in order to have an {pg-
unbiased estimator of the imputation vari-
ance is to find a 6° based on data for the
respondents and satisfying Eg(c}z) =o¢% In
Section 7 we provide such an estimator 6.

To illustrate, reconsider the two examples
started at the end of Section 3.

Mean imputation. We obtain T = m, the
number of respondents. Furthermore,
t,, = (N/n)(n—m) and t;, = N. From
(5-4),

Vimpe = N2(1/m — 1/n)0”

The factor 1/m—1/n reminds us of a
second phase SRSWOR selection of m
respondents from the n desired sample
units.

Ratio  imputation. In this case,
T=erk=mxr, ow"(N/n)(n_ )
and t;,, = NX,. From (5.4) we get

Vimpe = N*(1/m = 1/n)(X,%,/%,)0%.  (5.5)

The factor 1/m — 1/n appears again, which
is reassuring. Formula (5.5) also shows that,
given s and m, the imputation variance Vi,
is relatively higher when the response is
selective so that small x-value units
respond to a greater extent than large x-
value units. This is as it should be, because
when X, is smaller than X;, relatively many
large x-value units require imputation, and
the total imputation error > ,(Jr — k)
tends to have a high varlance To find
V,mp, it remains to replace ¢ in (5.5) by an
estimator 02, see Section 7.

6. Correction Term for the Sampling
Variance

To correct for the underestimation of the
sampling variance component, we focus
first on the difference between Vp(ys),
which is the proper sampling variance esti-
mate but impossible to compute, and
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Vp( Yes), Which can be computed but is nega-
tively biased

Vp(3s) = Vp(yas) = ZAk{(J’ky/ — $de)

+3 > Aieyi(ye = 92)

ker fco

+ 3D A yi(ye — Do)

keo ter

Following the procedure in Section 4, let us
estimate the model expected value of this
difference. That is, find C such that
EE(C) C= E{{V (ys) I} (yos)} then
use V,(yes) + C as an unblased estimator
of the sampling variance Vg, = E¢V).
Simple derivations give E¢{yx(y, —J7)} =
—apx;Trox, and  E(yiys — Jibe) = 0w

ka,;T, aaT,ax,, where oy, = o if k#¢
and oy, =0t if k=¢. Smce =0 2X0A,
both expectations equal o? times a quantity
that can be calculated from the known
x-data. Thus C = Eg{V (75) = Vp(yes)} s
of the form ¢*D, where D does not contain
any unknowns. The only task remaining is
to find an estimator &° such that
Eg(é'z) = ¢?D; then C = 6D appropriately
corrects the mechanically computed term
Vp(yos)'

There is considerable simplification if we
settle for the weighting a; = 1 for all k in
(3.2). Then C = ¢*D with

D=) AyXA—-R (6.1)
o

where R = Y 3, Apx T 'x,—
S ApXi T x, with T =3, XX / (34N
To compute the simple sum 3, ApXp is
easy, and although R involves two seemingly
complex double sums, we now show that R
can be computed with any existing software
that handles computation of the standard
variance estimator formula 17,,(-) for a given
sampling design.

Consider first the case J = 1. Then
X, = X; is a scalar and we can take A =1
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without loss of generality in the model (3.1).
In (6.1) we have T = mx, and

1{ I}p(xs) - I}p(xOs)}

where x; = {x;: k € s} is the x-data set for
the sample, and xo, = {xo: k € s} is the
sample data for the pseudo-variable x,
which agrees with x for a respondent and
is set to be zero for a nonrespondent, that
is, xqp=x; if ker and xup =0 if
k € o = s — r. Viewed in this way, the prob-
lem of computing R is reduced to that of
computing two standard design based vari-
ance estimates, Vp(xs) and Vp(x()s). This is
done by letting the standard variance
formula VP(-) operate on the data sets x;
and x,, respectively. Therefore, R is easily
computed with any software that calculates

~

= (mx,)”

(6.2)

V(o).

Mean imputation. Here, A =
NX(/n—=1/N)/n,  so 3, Auxi=
N2 (1/n—1/N)(n —m)/n. Further,

Vp(xs) = 0 because it is the estimated vari-
ance for a variable constant at unity, and
Vp(xOS) is the estimated variance for a vari-
ableequaling 1ifk € rand 0if k € 0. We get
T=m, R=-N*(1/n—1/N)(1—m/n)/
(n—1) and finally C = o’N%(1/n—1/N)
(n—m)/(n—1). For example, if the non-
response rate is 1 — m/n = 30%, the under-
statement portion C accounts for as much
as 30% of the entire sampling variance,

Viam = (1/n—1/N)d?, if we approximate
(m—-1)/(n—1) by m/n.

Ratio  imputation. Here we find
T = mx,, ZoAkkxk = Nz(l/n - I/N)
{(n—m)/n}x,. Moreover, to -calculate
(6.2) we need Vp(xs) =(1/n—1/N)S%
with  S% =Y ,(x — %)*/(n—1) and
I}p(xOs) = (l/n_ l/N)Szcs with S)zcosz
{Xrxk —n (3, %)}/ (n—1). Note that
14 »(x,) and 14 (o) are standard SRSWOR
variance estimates for the sample means X
and Xy, = > ¢ xor/n, where xgp = x; if k
is a respondent and xp =0 if £ is a
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nonrespondent. That is, apart from factors
in N, n and m, the calculation of D in (6.1)
requires two means, X, and X, and
two SRSWOR  variance estimates,
(1/n—1/N)S% and (1/n—1/N)S? . The
explicit expression for D in (6.1) is rela-
tively simple in this case and is given by

IO 1
=N =-=
b (n N)n—l

RN

(6.3)

Let us turn to computational aspects for
the case J > 2. Using spectral decomposi-
tion, we can write T =" 7 ;=1v;U;U}, where
the v; are the eigenvalues of T arranged in
decreasing order (all v; are positive), and
Uy,...,U; form an orthonormal basis of
eigenvectors of T. We then have

J
X;CT—IX{ = Z ’U~_1 (X;ch)(x//Uj)

j=1

Z jij[

~

where the values (j = vj_l/ zxchj can be
computed for kes, j=1,...,J. For
j=1,...,J, define the data sets (;; = {(:
kes} and (o, = {Gw: k€s}, where
CjOk = Cjk if ker and CjOk = 0 otherwise.
Now R in (6.1) can be written as

R= {I} (st) I}p(CjOs)}

'M~

1

J

where Vp(g“js) and VP(CjOS) are calculated
with the standard variance estimator for-
mula once the sets (;; and (jo, have been
obtained from the spectral decomposition.
Thus for J > 2, R is again easily computed
with the aid of any software that handles
the standard design based formula VP(-).
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7. The Estimation of ¢°

As noted in Sections 5 and 6, the variance
component estimators Vem and Viml,
require an estimator of the unknown o in
(3.1). We now present such an estimator,
assuming for simplicity the weighting
a, =1 for all k in (3.2). The idea is again
to exploit the already programmed formula
Vp(~). First compute the residuals
ey = yr — yr for the responding units
k €r, then define the ‘“pseudo-residual”
set eos = {eox: k € s}, where
ek =€ =y — i if ker and ey =0 if
keo. Now, V,(ey) =23 Areoreor =
S° 5, Ayseres, and we obtain

EcVy(e0s) = {(Z > Ak/eke/)
= U2Qr

where 0, = ¥, AgXid =33 Ak T,

with T = 37, XX /(X3 A). It follows that

& = Vyleos)/ Qs (7.1)

is a model unbiased estimator of o*. Note
that Q, can be calculated with the techni-
que in Section 6 for any dimension J >1
of the x;-vector.

We can now specify the desired variance
component estimators me and Vimp.
Defining also =3 A XA —
ZESAk/ka X, we can write (6.1) as

=o* (0, - Q,) and take C=
”Z(Qs 0r) = (Qs/Q — )V, (er) as the
desired term to prevent underestimation of
the sample variance. That is

+(Q/Qr —

~

Viam = (yos) 1) I}p (eOs)

(12)

is unbiased for the sampling variance com-
ponent Vam- Moreover, from (5.3)

tmp {tO WT ( S,W + tr,w)

- to,wa_ tr,l } I}p(eOs)/Qr (73)

391

is unbiased for the imputation variance
component V;,,. The total variance esti-
mate is the sum of (7.2) and (7.3). Since Q;
and Q, can be computed with the technique
in Section 6 (with spectral decomposition if
J > 1), we have a complete procedure for
variance estimation of the regression
imputed Horvitz-Thompson estimator. It
can be carried out with the aid of existing
survey sampling software.

Remark. A simplified alternative to (7.1)
is to estimate o* by

62 ={m/(m—J)} (Z ei) / (ZX;"\)

(7.4)

Although slightly biased, this simplified esti-
mator can be used in practice with good
results. The computational advantage com-
pared to (7.1) is, however, relatively minor.
To illustrate (7.1) to (7.4), consider again
the two examples.
Mean imputation. The standard formula

computed on the data after impu-
tation gives Vp(y.s) =N?*(1/n— l/N)
{(m— 1)/(n— 1)}55, with Sy,=
Zr(yk _)_}r) /(m A— l) From (7 1) and
(72)’ = S)zzr, (Qs/Qr - 1) (eOS)
2(1/:3 —~1/N) {(n=m)/(n~ N
Thus Vyn = N*(1/n— l/N)Sy,, a natural

estimator of the sampling variance. In addi-
tion, (7.3) gives Vi, = N2(1/m —1/n)S;,
Summing the components, we get

I;'tot = I;vsam + I}imp = Nz(l/m - I/N)S)z»r*

It is important to note that we get precisely
what many survey statisticians would agree
is the “natural variance estimator” in this
simple case. We have used model assisted
reasoning; the perhaps better known route
to the same formula is via two-phase sam-
pling argument, assuming the respondent
set r to be a SRSWOR subsample from s,
as in Oh and Scheuren (1983), and Cochran
1977).
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Ratio imputation. The standard formula
computed on data after imputation yields

7p(ye) = N2(1/n— 1/N)
X Z(yok - xsé)2/(n - 1)

where y,. =y if ker and y, = x.B if
k € o where B=7,/%,. We obtain Q, =
N*(/n = YN) {(m — 1) | (n — 1)}
%(1—m™'c?,), where cv,, = /% 18
the coefficient of variation of x in 7,

and V,(eqs) = N*(1/n—1/N) S, &/(n~1),
where e, = y; — Bx;. The model unbiased
estimator of o2 obtained from (7.1) is

& = [%,{1 — (1/m)c’}]™"

« (Zez)/(m..l).

With 4% defined in this way, the variance
component estimators are

I}sam = I}p(yos) + &ZD’
I}imp = Nz(l/m - 1/n)(J—Cojas/xr)&2 (7.6)

(1.5)

where D is given by (6.3). These results were
given in Sdrndal (1990, 1992). The simpler,
slightly biased o°-estimator defined by
(7.4) becomes ™% = {m/(m— 1)} (3, ¢l)/
(3>, xx), which is a good approximation to
(7.5).

8. Empirical Testing of the Method

We have seen that the method outlined in
Sections 4 to 7 produces a ¢pg-unbiased
estimator of the variance of 7, under the
conditions (A) and (B) in Section 4. That
the survey statistician is ready to accept
both assumptions is clear, because, as
Section 4 points out, both are needed to
justify the point estimator f,, that is, to
establish its unbiasedness. The statistician
who trusts these two conditions in order to
justify the point estimator must trust them
in the variance estimation procedure as well.
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Extensive empirical testing to confirm
theory has been carried out in the Ratio
Imputation example. Lee, Rancourt and
Sdrndal (1994) undertook Monte Carlo
simulations to study the performance of
the total variance estimator ¥, =
Veam + Vimp derived from (7.6). The main
conclusions were:

a. Confirming theory, the simulation
showed that V,, is a roughly
unbiased estimator of the variance
when the population scatter agrees
well with the assumption that justifies
ratio imputation, that is, the linear
regression through the origin, y, =
X0 + €.

b. According to the theory seen in this
paper, V,,, is essentially unbiased for
an arbitrary unconfounded mechan-
ism. Interestingly, the simulation
showed that the bias of V,, is quite
small even for confounded mech-
anisms such as when the response
probability, 6, is an explicit function
of the y,-value, for example,
0, =1 — exp (—cyx), where ¢ is a con-
stant. In this simulation at least, our
method was quite robust to a break-
down of the assumption of uncon-
foundedness. For the confounded
mechanisms examined, the absolute
relative bias of V,, was only of the
order of a few percentage points.

c. If the population scatter displays a
relationship other than linear regres-
sion through the origin, then some
bias was, not unexpectedly, noted in
V... The conclusion is that the
method is more sensitive to the regres-
sion model used to create the imputa-
tions than to' the assumption of
unconfounded response mechanism.
However, even in this case, V,,
improves greatly on the systematic
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understatement of the variance that
the standard uncorrected formula
V,(¥es) will produce.

9. Operating Mode

In closing, we reiterate the steps in the vari-
ance estimation procedure proposed in this
paper. We assume that the weighting
a; = 1 for all k is used in (3.2).

1. Regression fit. Fit the regress-
ion y,=x;B+¢ using data on

the respondents;  obtain B=
T Y, xep/(xA)  with  T=
5 %6/ (XEA).

2. Imputation. Impute the value j; = x;B
ifk €o.

3. Preparation of data sets and use of
standard formula. 1If J =1, prepare
the data sets y,;, X, Xos and eg;. Use
standard AformulaA Vp(-) to compute
Vp(yos), Vp(xs)’ Vp(xOS) and Vp(eOs)’
then compute Q,=A>, ApXp—
(Zr xk)_1 I}p(xOs) a{ld Qs =
AZs Akkxk - (Er xk)_l Vp(xs)' If
J > 2, compute instead @, and Q,
with the aid of V,((;;) and V,(Cjos)
obtained by spectral decomposition
as described in Section 6.

4. Estimation of model parameter o2
Compute 6* from (7.1).

5. Arriving at variance component esti-
mates and total variance estimate.
Compute V,,, and Vimp from (7.2)
and (7.3); finally, compute
Vit = Vam + Vimp-

It is in step (3) that existing com-
puter software comes in as a valuable
asset for computing the standard
design based variance formula 171,(-)
on several data sets. The other steps
are computationally  straightforward.
Alternatively, o* may be estimated by
(7.4).
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