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Variance Estimation Using List Sequential
Scheme for Unequal Probability Sampling

Yves G. Berger1

1. Introduction

Consider a ®nite population UN consisting of N units labelled i � 1;¼;N. The population

size N may be unknown. Let Uk be the subset of UN comprising the k ®rst units {1;¼; k}.

We will use the Horvitz-Thompson estimator (1951) to estimate the population total

T �k� � Y1 � Y2 � ¼ � Yk. This estimator is given by

ÃT �k� �
X
i[Sk

Yi

p�k;i�

�1�

where Sk is a sample of Uk. We assume that the size of Sk is constant and equal to n for all

k $ n. p�k;i�'s (i � 1;¼; k) denote the ®rst-order inclusion probabilities for a population

Uk.

Given that the size of the sample is ®xed, a variance estimator of (1) is given by the

Yates-Grundy estimator (1953):

ÃV �k� �
X
j[Sk

X
i[Sk

i<j

ÆD�k;i;j�

Yi

p�k;i�

ÿ
Yj

p�k;j�

� �2

�2�

where

ÆD�k;i;j� �
p�k;i�p�k;j�

p�k;i;j�

ÿ 1; i < j # k �3�

The problem of variance estimation is discussed in the light of the list sequential scheme
proposed by Chao (1982), in which units are selected without replacement and with unequal
probabilities. The variance is hard to estimate as it requires a large number of second-order
inclusion probabilities. We prove that it is unnecessary to compute all these probabilities.
We show that variance estimation needs only N numbers, where N is the population size.
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p�k;i;j� (i; j � 1;¼; k� denotes the second-order inclusion probability of units i and j. These

probabilities are dependent on the sampling scheme used. We call ÆD�k;i;j�'s the weights of

the variance estimator (2). Let ÆD�k;:;:� be the matrix of these weights. The large number of

weights involves heavy calculations for the Yates-Grundy estimator.

In Section 2, we de®ne the probability proportional-to-size sampling. In Section 3, we

introduce the Chao sampling scheme as well as one result linked to ®rst-order inclusion

probabilities. Section 4 gives major results concerning second-order inclusion probabil-

ities. In Section 5, we analyze ÆD�k;:;:� and the variance estimator. A numerical example

is provided in Section 6.

2. Probability Proportional-to-size Sampling

With a probability proportional-to-size sampling, the ®rst-order inclusion probabilities

satisfy

p�k;i� �
nXiX

j[Uk

Xj

�4�

where Xi's are values of some auxiliary variable. We simply assume that

0 < Xi #
1

n

X
j[Uk

Xj �5�

for all k > n and for all i # k. This means that the ®rst-order inclusion probabilities p�k;i�

are strictly proportional to Xi for all k > n. This hypothesis is more likely to break down

when k is small, i.e., close to n. We can solve this problem by assuming that the values of

the auxiliary variable show little dispersion for units occurring at the beginning of the

population unit sequence.

When p�k;i� is exactly proportional to Yi, the variance of the Horvitz-Thompson estimator

becomes zero. For that reason, we prefer to implement a probability proportional-to-size

sampling scheme.

3. Chao's Unequal Probability Sampling Scheme

Chao (1982) proposes a probability proportional-to-size sampling. This is a generalization

of the McLeod and Bellhouse (1983) sampling scheme. Chao's sampling scheme provides

the advantage of being sequential. In fact, the sample is selected through a simple sequential

run of the population.

The sampling process of Chao (1982) allows us to pass from a sample Sk

selected with inclusion probabilities p�k;i�'s to a sample Sk�1 selected with inclusion

probabilities p�k�1;i�'s. For this scheme, we simply draw the (k � 1)th unit with the

probability

wk � p�k�1;k�1�

If the (k � 1)th unit is not drawn, then we take Sk�1 � Sk; otherwise, we take Sk�1 �

Sk È fk � 1g\fjg; where j is a unit selected at random within Sk. This procedure starts
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from an initial sample Sn � Un comprising the n ®rst units of the population. This method

is repeated until k � N.

The following lemma provides a relation between the ®rst-order inclusion probability

p�k;i� of the ith unit of Uk and the ®rst-order inclusion probability p�k�1;i� of the ith unit

of Uk�1.

Lemma 1.

p�k�1;i� �
Q�k;i�p�k;i� ; if i < k � 1

wk ; if i � k � 1

�
�6�

where

Q�k;i� � 1 ÿ wkR�k;i� �7�

R�k;i� �

1 ÿ p�n�1;i�
wn

for k � n

1
n for k $ n � 1

8<: �8�

wk � p�k�1;k�1�

The proof of this lemma can be found in Appendix I.

4. Second-order Inclusion Probabilities

The second-order inclusion probabilities for Chao's sampling scheme can be calculated

iteratively using the following theorem:

Theorem 1. If i < j;

p�k�1;i;j� �
�Q�k;i� � Q�k;j� ÿ 1�p�k;i;j� ; if j < k � 1

wk�1 ÿ R�k;i��p�k;i� ; if j � k � 1

�
�9�

The proof of this theorem can be found in Chao (1982, Lemma 2).

Bethlehem and Schuerhoff (1984) give a necessary and suf®cient condition for the

second-order inclusion probabilities to be strictly positive for a population Uk:

#fi : i # , and p�,;i� � 1g # n ÿ 1; for , such that n < , # k

By using (5), p�,;i� < 1 for all i and , such that i # , # k. Then this condition is always

met. Therefore, within the framework of this article, we will never have zero second-order

inclusion probabilities. Thus the Yates-Grundy estimator (2) is always unbiased.

Moreover, Chao (1982) states that the weights ÆD�k;i;j� are always positive if Chao's sampling

scheme is implemented. This ensures that the Yates-Grundy estimator will never be negative.

5. Variance Estimator

To compute the Yates-Grundy estimator for a population Uk�1, we must know the matrix
ÆD�k�1;:;:�.

From Lemma 1 and Theorem 1, we derive a recursive relation for ÆD�k�1;i;j�.
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Lemma 2. If i < j,

ÆD�k�1;i;j� �

Q�k;i�Q�k;j�

Q�k;i� � Q�k;j� ÿ 1
ÆD�k;i;j� � 1
� �

ÿ 1 if j < k � 1

Q�k;i�

1 ÿ R�k;i�

ÿ 1 if j � k � 1

8>>><>>>:
The following theorem shows that most elements of a given column of ÆD�k�1;:;:� are

identical. Theorem 2 is the corner stone of the present article.

Theorem 2. If i < j,

ÆD�k�1;i;j� �
b�k�1;i;j� if j # n � 1

a�k�1;j� if j > n � 1

�
where

b�k�1;i;j� � ÿ 1 �
p�n�1;i�p�n�1;j�

p�n�1;i� � p�n�1;j� ÿ 1

Yk

,�n�1

p, �10�

a�k�1;j� � ÿ 1 �
n ÿ wjÿ1

n ÿ 1

Yk

,�j

p, �11�

p, �

1 ÿ
w,

n

� �2

1 ÿ 2
w,

n

�12�

The proof of this theorem can be found in Appendix II.

We note that the vector a�k�1;:� and some elements of the matrix b�k�1;:;:� are required to

compute ÆD�k�1;:;:�. Using Theorem 2, we only need w, (, � n � 1;¼; k� and p�n�1;i�

(i � 1;¼; n � 1) to compute the vector a�k�1;:� and the matrix b�k�1;:;:�. Therefore, it is

only necessary to compute the following vector of length k:

p�n�1;1�; p�n�1;2�;¼; p�n�1;n�1�; p�n�2;n�2�; p�n�3;n�3�;¼; p�k;k�

� 	
�13�

Moreover, using (4), it is clear that

p�n�1;i� �
nXi

Cn�1

if i # n � 1

p�i;i� �
nXi

Ci

if i > n � 1

Where Ci's are cumulative totals of the auxiliary variable:

Ci �

Ciÿ1 � Xi if i > nXn

,�1

X, if i � n

8><>:
Thus the vector (13) needs only the Ci's, which can be computed during the sampling

process. Finally, if we know the cumulative totals, it is rather easy to compute the matrix
ÆD�k�1;:;:�.
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The special structure of ÆD�k�1;:;:� provides simpli®cation for the Yates-Grundy estimator.

Indeed, using

Yi

p�k�1;i�

�
Ck�1

n

Yi

Xi

and Theorem 2, the Yates-Grundy estimator becomes

ÃV�k�1� �
Ck�1

n

� �2 X
j [ Sk�1
j > n� 1

a�k�1;j�

X
i [ Sk�1

i< j

Di j �
X

j [ Sk�1
j # n�1

X
i [ Sk�1

i < j

b�k�1;i;j�Di j

8><>:
9>=>; �14�

where

Di j �
Yi

Xi

ÿ
Yj

Xj

� �2

If we assume that the value of the auxiliary variable is small for units occurring at the

beginning of the population unit sequence, there is no more than a small probability of

selecting those units. This means that the ®rst sum contains most of the terms. Fortunately,

the ®rst sum is the simplest to compute. It is therefore preferable to place the units having

small value of the auxiliary variable at the beginning of the population unit sequence.

6. Numerical Example

Suppose that we want to select three units from a population U10, composed of 10 units.

Consider the values of the auxiliary variable:

f45; 30; 28; 40; 24; 49; 17; 62; 56; 29g:

The respective ®rst-order inclusion probabilities are

Using Theorem 2, we obtain the matrix ÆD�10;:;:�:
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i i � 1 i � 2 i � 3 i � 4 i � 5 i � 6 i � 7 i � 8 i � 9 i � 10

p�10;i� 0.355 0.237 0.221 0.316 0.189 0.387 0.134 0.489 0.442 0.229

i j � 2 j � 3 j � 4 j � 5 j � 6 j � 7 j � 8 j � 9 j � 10

1 0.319 0.328 0.288 0.589 0.311 0.563 0.237 0.269 0.385
2 ± 1.171 0.435 0.589 0.311 0.563 0.237 0.269 0.385
3 ± ± 0.471 0.589 0.311 0.563 0.237 0.269 0.385
4 ± ± ± 0.589 0.311 0.563 0.237 0.269 0.385
5 ± ± ± ± 0.311 0.563 0.237 0.269 0.385
6 ± ± ± ± ± 0.563 0.237 0.269 0.385
7 ± ± ± ± ± ± 0.237 0.269 0.385
8 ± ± ± ± ± ± ± 0.269 0.385
9 ± ± ± ± ± ± ± ± 0.385



Therefore, the matrix b�10;:;:� is given by

and the vector a�10;:� is

7. Conclusion

If we implement the Chao sampling scheme, we show that the Yates-Grundy estimator has

a special structure, in the sense that most of the weights of this estimator are identical.

Moreover, to compute this estimator, we need only cumulative totals of the auxiliary

variable.

Appendix I: Proof of Lemma 1

This result is a direct application of the following relation given by Chao (1982):

p�k�1;i� �
1 ÿ wkR�

�k;i�

� �
p�k;i� if i # k

wk if i � k � 1

�
�15�

where

R�
�k;i� �

T�k; i� if p�k;i� � 1

1 ÿ Tk

n ÿ Lk
if p�k;i� < 1

8<: �16�

Tk �

X
j [ Bk

T�k; j� if Bk Þ 0=

0 if Bk � 0=

8<:
T�k; i� �

1 ÿ p�k�1;i�

wk

Bk � fi : p�k;i� � 1;p�k�1;i� < 1; i # kg

Lk � #fi : p�k;i� � 1g

By comparing (6) and (15), the lemma is proved if we show that R�k;i� � R�
�k;i� for all k > n

and for all i # k. We examine two cases separately, k � n and k $ n � 1.
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i j � 2 j � 3 j � 4

1 0.319 0.328 0.288
2 ± 1.171 0.435
3 ± ± 0.471

j � 5 j � 6 j � 7 j � 8 j � 9 j � 10

a�10;j� 0.589 0.311 0.563 0.237 0.269 0.385



Case 1. If k � n, p�k;i� � 1 for all i # n. Thus

R�
�k;i� �

1 ÿ p�n�1;i�

wn

i.e., R�n;i� � R�
�n;i� for all i # n

Case 2. If k $ n � 1, p�k;i� < 1 for all i # k. As set Bk is empty, Lk � Tk � 0. Thus

R�
�k;i� � 1=n. Now using (8), it is clear that R�k;i� � R�

�k;i�. This completes the proof.

Appendix II: Proof of Theorem 2

First b�k�1;i;j� and a�k�1;j� can be written in the following way:

b�k�1;i;j� �

p�n�1;i�p�n�1;j�

p�n�1;i� � p�n�1;j� ÿ 1 ÿ 1 if j # n � 1 � k � 1

pk b�k;i;j� � 1
� �

ÿ 1 if j # n � 1 < k � 1

8<: �17�

a�k�1;j� �

n ÿ wk

n ÿ 1
ÿ 1 if j � k � 1 > n � 1

pk�a�k;j� � 1� ÿ 1 if j < k � 1 > n � 1

8<: �18�

Indeed, using (17), we have

b�n�1;i;j� �
p�n�1;i�p�n�1;j�

p�n�1;i� ��n�1;j� ÿ1
ÿ 1 �19�

b�n�2;i;j� � pn�1�1 � b�n�1;i;j�� ÿ 1 �20�

..

.

b�k�1;i;j� � pk�bk;i;j� � 1� ÿ 1 �21�

Putting (19, (20) ... (21) together, we effectively obtain (10).

If we do the same with (18), we have

a�j;j� �
n ÿ wjÿ1

n ÿ 1
ÿ 1 �22�

a�j�1;j� � pj�a�j;j� � 1� ÿ 1 �23�

..

.

a�k�1;j� � pk�a�k;j� � 1� ÿ 1 �24�

Putting (22), (23) .. (24) together, we effectively obtain (11).

Now, with (17) and (18), it will be easier to prove Theorem 2.

Consider two cases: j # n � 1 and j > n � 1.

Case 1. Suppose that j # n � 1. By using ÆD�n;i;j� � 0 and Lemma 2, we obtain

ÆD�n�1;i;j� �

Q�n;i�Q�n;j�

Q�n;i� � Q�n ; j� ÿ 1
ÿ 1 if j < n � 1

Q�n;i�

1 ÿ R�n;i�

ÿ 1 if j � n � 1

8>>><>>>: �25�
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As

R�n;i� �
1 ÿ p�n�1;i�

wn

Q�n;i� � p�n�1;i�

(25) becomes

ÆD�n�1;i;j� �

p�n�1;i�p�n�1; j�

p�n�1;i� � p�n�1; j� ÿ 1
ÿ 1 if j < n � 1

p�n�1;i�wn

p�n�1;i� � wn ÿ 1
ÿ 1 if j � n � 1

8>><>>:
Comparing with (17) ÆD�n�1;i;j� � b�n�1;i;j�, i.e., ÆD�k�1;i;j� � b�k�1;i;j� for k � n.

Now for a population size k > n, we can prove

ÆD�k�1;i;j� � b�k�1;i;j� �26�

via induction by supposing that

ÆD�k;i;j� � b�k;i;j� �27�

As j # n � 1 and k > n, it is clear that j < k � 1. Thus using (27) and Lemma 2, we obtain

ÆD�k�1;i;j� �
Q�k;i�Q�k; j�

Q�k;i� � Q�k; j� ÿ 1
b�k;i;j� � 1
� �

ÿ 1 �28�

Through (7) and (8), we have

Q�k;i� � 1 ÿ
wk

n

By replacing the last relation in (28) and by comparing to (17), we effectively obtain

ÆD�k�1;i;j� � b�k�1;i;j�

Case 2. Suppose that j > n � 1. First, we note that ÆD�k�1;i;j� is only de®ned for k � 1 $ j.

For k � 1 � j, Lemma 2 gives

ÆD�k�1;i;j� �
Q�k;i�

1 ÿ R�k;i�

ÿ 1 �29�

As k > n � 1,

R�k;i� �
1

n

Q�k;i� � 1 ÿ
wk

n

Putting the last two expressions in (29), we have

ÆD�k�1;i;j� �
n ÿ wk

n ÿ 1
ÿ 1

Thus using (18), we have ÆD�k�1;i;j� � a�k�1; j� if k � 1 � j. Now, we end the proof via
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induction. Suppose that ÆD�k;i;j� � a�k; j� for k $ j. Using Lemma 2,

ÆD�k�1;i;j� �
Q�k;i�Q�k; j�

Q�k;i� � Q�k; j� ÿ 1
�a�k; j� � 1� ÿ 1 �30�

As k > n � 1,

Q�k;i� � 1 ÿ
wk

n

By replacing the last relation in (30) and by comparing to (18), we effectively obtain

ÆD�k�1;i;j� � a�k�1; j�

This completes the proof.
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