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In the past few years, Statistics Netherlands has been implementing the repeated weighting
estimator in its regular estimation process. This estimator ensures numerical consistency
among tables estimated from different surveys. Especially when the tables have some
variables in common, this approach appears to be very useful. After a concise summary of the
repeated weighting procedure, this article gives the variance formulas for the repeated
weighting estimator. It concludes with an example from the Dutch Labour Force Survey. The
variance estimator for this example is discussed and the results of a simulation study testing
the accuracy of this estimator are presented.
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1. Introduction

In classical survey estimation, each survey is carried out and processed independently of

the other surveys and, consequently, the set of weights is held constant per survey. Such a

unique set of weights for each survey makes it easy to compose various tables from the

same survey. However, a serious drawback of the classical approach is that

multidimensional tables from two or more surveys which have a variable in common

may have different numerical values for the same variable, i.e., the tables need not be

numerically consistent. In the last few years, Statistics Netherlands has been implementing

an alternative estimation strategy, called repeated weighting (RW). The RW estimation

strategy accommodates user demands to produce outputs that are numerically consistent.

The underlying methodology is based on the seminal paper by Kroese and Renssen (1999).

In a recent article by Houbiers (2004), considerations with respect to the RW estimation

procedure plus its applicability in practice are described extensively. She also describes

the social-statistical database (SSD) in which data from various surveys and registers are

combined. For further details, see Houbiers (2004), Boonstra et al. (2003) and the

references therein.
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In essence, the RW estimation procedure amounts to an additional calibration step to

adjust the standard regression weights. For some tables such a step might be necessary

when margins of a table to be estimated are already estimated from a larger survey or the

margins are known from a register. For more results on calibration estimators, see Deville

and Särndal (1992). This article presents a derivation of the variance formulas for the RW

estimator, as well as the results of a simulation study testing these formulas in practice.

The outline of the article is as follows. Section 2 gives a concise summary of the RW

estimation procedure for a set of frequency tables and introduces some notation. In

Section 3 we present a method for estimating the variance of the RW estimator. This

method is based on the variance tree of so-called superresiduals described in Knottnerus

(2001) and Boonstra et al. (2003). Section 4 gives a practical example with real data plus a

number of useful recursions for estimating the variance. Section 5 describes the results of a

simulation study. The simulations are carried out with data from the Dutch Labour Force

Survey in order to get an insight into the performance of the variance estimators described

in Section 3.

2. The Repeated Weighting (RW) Procedure

The main aim of the RW estimation procedure is to obtain a set of numerically consistent

tables in cases where the tables are estimated from different sources. These sources may be

either surveys or registers. Regarding a given reference period, a set of target tables is

specified. Throughout this article we make four assumptions:

1. the reference period of the registers and the surveys is the same;

2. the registers and surveys refer to the same population;

3. variables with the same name have the same definition for all relevant registers and

surveys;

4. the categorical variables have hierarchical classifications, i.e., each class of a more

detailed classification is nested within one class of a less detailed classification.

If the first three assumptions are not fulfilled, the RW estimates are not meaningful, since

we will have imposed numerical consistency on quantities that need not be numerically

consistent. The last assumption is required for the RW procedure to work. The variables

referred to in these assumptions are those appearing in the set of target tables that one

wants to estimate. Therefore it is necessary to specify this set before one can check

whether the requirements are met.

In this article we focus on RW estimates using the so-called splitting up procedure. This

procedure is a practical way of dealing with the order problem, i.e., the problem that the

estimation results depend on the ordering of the tables to be estimated (for further details,

see Boonstra et al. 2003). For simplicity, we restrict ourselves here to the case of

(multidimensional) frequency tables.

The proposed RW estimation procedure consists of three steps. First, the set of target

tables is specified and ordered. Second, the tables are estimated by means of the regression

estimator. Third, a reweighting step is performed in which the table estimates are

consecutively adjusted in such a way that numerical consistency between the estimates is

obtained. We discuss each of these steps in more detail.
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2.1. Step 1. Specifying and Ordering the Tables

First, the set of target tables to be estimated is specified. Next, all margins of a target table

are added to the set of tables to be estimated. A marginal table is obtained by (i)

aggregating over one or more categorical variables of a multi-way table or (ii) using a less

detailed classification of a categorical variable. For example, the two-way table A £ B is a

margin of the table A £ B £ C and also of the table A £ B ð2Þ;where B ð2Þ has a more detailed

classification than B. The tables are then ordered in such a way that a margin of a

multidimensional table always precedes that table.

2.2. Step 2. Regression Estimation of the Tables

In this step, each table is estimated by means of the regression estimator from the most

appropriate data set. In general, this will be the largest survey or a combination of surveys,

also called a block and denoted by S. Note that when all variables of a table are available

from registers, the table can simply be counted from the register data. Before we introduce

the regression estimator for a frequency table, we introduce some notation. Let xi denote

the vector of J auxiliary variables for the ith element in a regression from block S. Let tx
denote the corresponding vector of population totals of the auxiliary variables.

Furthermore, let tY denote a vectorized multi-way frequency table of the (multiple)

categorical variable Y with Pmutually exclusive categories or cells. To indicate the actual

categorical variables in the table in practice, Y will often be of the form A £ B or

A £ B £ C; etc; for the algebra of vectorizing multi-way tables, see Knottnerus (2003,

pp. 371–372). The underlying vector yi of the vectorized frequency table tY can be seen as

a P-vector of zeroes except one unity value, indicating the appropriate class of the ith

element with respect to the (multiple) categorical variable Y; note that tY ; ty ;
P

i[U yi;

where U stands for the population. The regression estimator of a vectorized multi-way

frequency table tY from block S can now be written in standard matrix notation as

t̂
REGðSÞ
Y ¼ t̂

HTðSÞ
Y þ B̂ 0

d;x tx 2 t̂
HTðSÞ
x

� �

¼
i[S

X
dðSÞi yi þ B̂ 0

d;x tx 2
i[S

X
dðSÞi xi

0
@

1
A

B̂d;x ¼
i[S

X
dðSÞi xix

0
i

0
@

1
A

21

i[S

X
dðSÞi xiy

0
i

where t̂
HTðSÞ
Y and t̂

HTðSÞ
x are Horvitz-Thompson (HT) estimators from block S, and y 0i; x

0
i and

B 0 are the transposes of yi; xi and B; respectively. The dðSÞi stand for the design weights in

block S. That is, for a single sample we have straightforwardly dðSÞi ¼ 1=pSi, where pSi is

the first-order inclusion probability for that sample. For a block consisting of, for instance,

the union of two samples S1 and S2 we may choose

t̂
HTðSÞ
Y ; l1 t̂

HTðS1Þ
Y þ ð12 l1Þt̂

HTðS2Þ
Y ;

i[S

X
dðSÞi yi ð1Þ
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where l1 reflects the relative weight or reliability of S1 in block S. Consequently,

dðSÞi ¼

l1=p1i if i [ S1 and i � S2

ð12 l1Þ=p2i if i [ S2 and i � S1

l1=p1i þ ð12 l1Þ=p2i if i [ S1 > S2

8>><
>>:

A simple manner for choosing an appropriate value for l1 is to set l1 ¼ n1=ðn1 þ n2Þ

where n1 and n2 are the sample sizes of S1 and S2; respectively. In general, it can be shown

that this choice of l is optimal when S1 and S2 are two (independent) simple random

samples with replacement, or when S1 and S2 are two mutually disjoint subsamples

without replacement from a large SRS mother sample S without replacement; see

Knottnerus (2003, p. 340). For examples illustrating that for unequal probability sampling

the sampling error can be much more relevant than the sample size, see Section 5 and

Houbiers et al. (2003).

In terms of weights the regression estimator can be written in the familiar form

t̂
REGðSÞ
Y ¼

i[S

X
wðSÞ
i yi

wðSÞ
i ¼ dðSÞi 1þ x 0i

i[S

X
dðSÞi xix

0
i

0
@

1
A

21

tx 2 t̂
HTðSÞ
x

� �8<
:

9=
; ¼ dðSÞi gðSÞi

ð2Þ

A well-known property of the regression weights wðSÞ
i is that they satisfy the calibration

equations

i[S

X
wðSÞ
i xi ¼ tx

Recall that the regression weights wðSÞ
i can be seen as the solution of the constrained

minimization problem

minw
i[S

X
dðSÞi

wi

dðSÞi

2 1

 !2

subject to
i[S

X
wixi ¼ tx

see Deville and Särndal (1992). In addition, throughout this article we assume that a

constant term is included in the underlying regressions so that the residuals ei from a

regression on the whole population have a zero total, i.e., te ¼ 0:

2.3. Step 3. The Reweighting Step

When for a certain table the regression weights wðSÞ
i lead to a margin that is numerically

inconsistent with an estimate of that margin from a previously estimated table of the set,

that table should be reweighted. Such an inconsistency will occur when, for instance, such

a margin is observed in a block larger than S whereas that margin is not included in the

vector xi of auxiliaries or, in terms of calibration, the margin is not included in

the calibration equations for the actual block S. By reweighting we mean an adjustment of
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the regression weights wðSÞ
i for this specific table so that the margins of the reweighted

table are in line with their estimates from a preceding table or their known counts from a

register. Let m denote the vector variable of all linearly independent margins of the

present, vectorized multi-way table tY : For a further discussion on margins when one of the

variables in table tY has two or more hierarchical classifications, see Boonstra et al. (2003).

Now the RW estimator of tY from block S is defined in a recursive way by

t̂
RW
Y ¼t̂

REGðSÞ
Y þ B̂ 0

w;m t̂
RW
m 2 t̂

REGðSÞ
m

� �

B̂w;m ¼
i[S

X
wðSÞ
i mim

0
i

0
@

1
A

21

i[S

X
wðSÞ
i miy

0
i

ð3Þ

For an example, see Section 4. The elements in t̂
RW
m are estimates from a preceding table

or known counts from a register. Similarly to (2), we can write the RW estimator t̂
RW
Y in

terms of weights. That is,

t̂
RW
Y ¼

i[S

X
rðYÞi yi

rðYÞi ¼ wðSÞ
i 1þ m 0

i
i[S

X
wðSÞ
i mim

0
i

0
@

1
A

21

t̂
RW
m 2 t̂

REGðSÞ
m

� �8<
:

9=
;

Hence, by construction the rðYÞi satisfy the corresponding consistency requirements

i[S

X
rðYÞi mi ¼ t̂

RW
m

This also holds true when the variables in m are linearly dependent, provided that the

consistency constraints have a solution and the generalized inverse is used in the foregoing

formulas; see Renssen and Martinus (2002).

In summary, repeated weighting can be seen as an additional calibration step for a new

adjustment of the regression weights wðSÞ
i resulting in the final weights rðYÞi , which are

consistent with the given margins of the present table. That is, these margins are already

given by estimates from preceding tables or are already known from a register. Similarly to

the second step, the rðYÞi can be seen as the solution of the recalibration problem

minr
i[S

X
wðSÞ
i

ri

wðSÞ
i

2 1

 !2

subject to
i[S

X
rimi ¼ t̂

RW
m

Finally, it should be noted that the vector tx in the regression estimator in Step 2 may

include elements which are estimated for a preceding table from a larger block by either

standard weighting or repeated weighting. However, because of its recursive definition the

RW estimator always remains within the class of linear combinations of regression

estimators from the underlying samples.

Knottnerus and van Duin: Variances in Repeated Weighting 569



As an alternative to repeated weighting, one could simply include mi in the auxiliary

vector xi to avoid numerical inconsistencies among the tables. Such an approach should

work well when each sample size is sufficiently large and the number of variables in xi and

mi is small. However, in the case of a large table the number of variables in xi and mi can

be rather large and this approach will often become hard to apply because of a lack of

observations in many cells. Repeated weighting reduces this problem by limiting the

number of calibration equations involved in each particular table estimate.

When the samples are large enough, a fairly different approach is as follows. Assuming

that there are q tables with common margins, define tY ¼ ðt 0Y1; : : : ; t
0
Yq; t

0
xÞ

0: Let RtY ¼ c

be the set of linear consistency equations. This includes tx ¼ tx0; where tx0 is the vector of

known population totals. Let t̂Y be the estimated vector resulting from the different surveys

and let VY be its covariance matrix. Assuming normality, the optimal consistent solution

according to least squares theory now becomes

t̂
ðconsÞ
Y ¼ t̂Y þ Kðc2 Rt̂Y Þ

Covðt̂
ðconsÞ
Y Þ ¼ ðI 2 KRÞVY

K ¼ VYR
0ðRVYR

0Þ21

For further details and examples, see Knottnerus (2003, Chapter 12) and the references

given therein.

3. The Variance of the RW Estimator

In order to derive a formula for the variance of the RW estimator, we consider the situation

with one register and two independent samples S1 and S2 without replacement of sizes n1
and n2; respectively. The first- and second-order inclusion probabilities are denoted by pki

and pkij; respectively ðk ¼ 1; 2Þ: Let the vector xi of auxiliaries be known from a register

for all elements i in population U. Let the categorical variable Z be observed in S1 and S2,

and let the categorical variable Y be observed in S2. Suppose that for all initial estimates we

use the regression estimator based on the auxiliaries in x, irrespective of the survey. It is

obvious that, in general, the Z-margin from the estimated two-way table t̂
REGðS2Þ
Z£Y from S2 is

numerically inconsistent with the estimated table t̂
REGðS12Þ
Z from S12, i.e., the union of S1 and

S2. Therefore, according to the splitting up procedure the estimated table t̂
REGðS2Þ
Z£Y is to be

reweighted with respect to its two margins. Applying (3), we get

t̂
RW
Z£Y ¼ t̂

REGðS2Þ
Z£Y þ B̂ 0

w;Z ; B̂
0
w;Y 2

� � tREGðS12ÞZ 2 t̂
REGðS2Þ
Z

tREGðS2ÞY 2 2 tREGðS2ÞY 2

0
@

1
A

¼ t̂
REGðS2Þ
Z£Y þ B̂ 0

w;Z tREGðS12ÞZ 2 t̂
REGðS2Þ
Z

� �
þ 0

ð4Þ

where Y 2 is obtained from Y by leaving out one of its categories; this removes a

redundancy or, equivalently, a linear dependency among the margins in the underlying

regression. Note that the matrix B̂w;m ½¼ ðB̂ 0
w;Z ; B̂

0
w;Y 2 Þ0� stems from a weighted regression

of the categorical variable Z £ Y on the categorical variables Z and Y 2 with weights wðS2Þ
i
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or, more precisely, from the weighted regressions of the dichotomous variables in yi^zi on

the dichotomous variables in zi and y
2
i : Also note that tZ£Y ¼

P
i[U yi^zi; where^ is the

Kronecker product and tZ£Y is defined as the vector in which the columns of the two-way

frequency table Z £ Y are stacked one on top of the other. From (4) it can be seen that

the RW estimator can be written as a linear combination of regression estimators from S1
and S2:

Before we derive the variance formulas for the RW estimator, it is recalled from

standard sampling theory that a regression estimator for a frequency table from a random

sample S of size n can be approximated by

t̂
REGðSÞ
Y ¼ t̂

HTðSÞ
Y þ B̂ 0

d;x tx 2 t̂
HTðSÞ
x

� �

¼ t̂
HTðSÞ
Y þ B 0

x tx 2 t̂
HTðSÞ
x

� �
þ ðB̂d;x 2 BxÞ

0 tx 2 t̂
HTðSÞ
x

� �
¼ constantþ t̂

HTðSÞ
e þ OpðN=nÞ ðconstant ¼ B 0

xtx ¼ tY Þ

ð5aÞ

ei ; yi 2 B 0
xxi

Bx ¼
i[U

X
xix

0
i

0
@

1
A

21

i[U

X
xiy

0
i

ð5bÞ

In (5b) we made the regularity assumption that all estimated population means and

regression coefficients have variances of order 1=n; see Knottnerus (2003, p. 119). Note

that the so-called population residual ei is a vector of ordinary variates; cf. the yi:

Subsequently, the covariance matrix of the regression estimator t̂
REGðSÞ
Y from (5a) can be

approximated in the usual manner by

Cov t̂
REGðSÞ
Y

� �
¼

i; j[U

X
ðpij 2 pipjÞ

eie
0
j

pipj

Assuming that 1 ,, n ,, N; we can borrow the variance estimator from the Hansen-

Hurwitz (HH) estimator for estimating this variance; see Särndal et al. (1992, p. 422). That

is, assuming that the sample size is much smaller than N, we may ignore the finite

population correction. For the case at hand, this yields

Côv t̂
REGðSÞ
Y

� �
¼

i[S

X
dðSÞi

� �2
êiê

0
i ð6Þ

For a justification of this form, see (A3) in Appendix A. The estimated sample residuals

êi in (6) are based on the estimated regression matrices B̂d;x from S.

Now it is rather straightforward to derive an approximation formula for the variance of

an RW estimator. Similarly to (5b), we can approximate the RW estimator from (4) by

t̂
RW
Z£Y ¼ tZ£Y þ t̂

HTðS2Þ
eðZ£YÞ þ B 0

Z t̂
HTðS12Þ
eðZÞ 2 t̂

HTðS2Þ
eðZÞ

� �
þ OpðN=n2Þ

where eið·Þ is a vector of residuals for the ith element of population U from a regression of

(·) on the variables in x. Decomposing t̂
HTðS12Þ
eðZÞ into its two underlying components
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according to (1) and neglecting higher-order terms, we get

t̂
RW
Z£Y ¼ tZ£Y þ t̂

HTðS2Þ
eðZ£YÞ þ B 0

Z l1t
HTðS1Þ
eðZÞ þ ð12 l1Þt

HTðS2Þ
eðZÞ 2 t̂

HTðS2Þ
eðZÞ

n o

; tZ£Y þ t̂
HTðS1Þ
11

þ t̂
HTðS2Þ
12

where the so-called superresiduals 11i and 12i for S1 and S2 are defined by

11i ¼ l1B
0
ZeiðZÞ

12i ¼ l2B
0
ZeiðZÞ þ eiðZ £ YÞ2 B 0

ZeiðZÞ ðl2 ¼ 12 l1Þ

respectively ði ¼ 1; : : : ; NÞ: These superresiduals play a crucial role for estimating the

covariance matrix of an RW estimator. Using that S1 and S2 are independent, the

covariance matrix of t̂
RW
Z£Y can be approximated by

Cov t̂
RW
Z£Y

� �
¼ Cov t̂

HTðS1Þ
11

þ t̂
HTðS2Þ
12

� �
¼
X2
k¼1 i;j[Sk

X
ðpkij 2 pkipkjÞ

1ki1
0
ki

pkipkj

Similarly to (6), this covariance can be estimated by

Côv t̂
RW
Z£Y

� �
¼
X2
k¼1 i[Sk

X
dðSkÞi

� �2
1̂ki1̂

0
ki ð7Þ

provided that n1; n2 ,, N: Note that the superresiduals 1ki ðk ¼ 1; 2Þ have zero totals as

well. Furthermore, the estimated superresiduals from the samples are based on the

estimated regression matrices B̂d;x and B̂w;Z ; note that these matrices depend on the actual

block and the dependent variable of the underlying regression. For a discussion on the

variance for RW estimators under two-phase sampling and a simple variance

approximation of the RW estimator, which is useful in the context of one register in

combination with one sample, see Boonstra et al. (2003). In the next section we will show

how in more complicated situations the superresiduals can be calculated table by table in a

recursive manner.

4. An Example from the Dutch Labour Force Survey

Houbiers (2004) describes the present state of the Social-Statistical Database (SSD) used

by Statistics Netherlands. Furthermore, she explains how different surveys and registers

can be combined in order to obtain reliable and consistent estimates from the SSD by

means of repeated weighting. She also discusses a number of complications in the process

of constructing the SSD and estimating consistent tables from it. In this section we will

elaborate on her example of the Dutch Structure of Earnings Survey (SES), in which the

Employment and Wages Survey (EWS) is combined with the Labour Force Survey (LFS);

see Figure 1. In particular, we derive the variance estimators for the RW estimators, which

were used to obtain numerically consistent estimates. A special feature of SES is that the

population consists of jobs. The auxiliary variables gender (G) with 2 classes, age (A) with

5 classes, and business class (C) with 24 classes are known from a register for all jobs of
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the population. The study variable working hours (H) with 2 classes is observed in the

EWS ðS1Þ while the variable education or learning (L) with 7 classes is observed in the

LFS ðS2Þ:

Our target table is the three-way frequency table gender £ working hours £ education

or, for short, tG£H£L: This table with 28 ð¼ 2 £ 2 £ 7Þ cells is to be estimated from the

overlap of S1 and S2: S1 is a sample of approximately 50% of the population of jobs while

S2 is an independent sample of only 1.56% of the population. The overall weighting

scheme for S1; S2 as well as S3 ð; S1 > S2Þ consists of the dichotomous variables

corresponding to the categorical variables gender £ age and business class or, for short,

G £ Aþ C: Taking into account the various number of classes, the vector x of linearly

independent auxiliaries consists of 33 ð¼ 2 £ 5þ 24 � 1 dichotomous variables

corresponding to the weighting scheme ðG £ AÞ þ C:

According to the splitting up procedure, we first estimate the one-way tables tH and tL
from S1 and S2; respectively. Next, we estimate the two-way tables tG£H from S1; tG£L
from S2; and tH£L from the overlap of S1 and S2: Since G is included in the vector of

auxiliaries, the estimated tables tREGðS1ÞG£H and tREGðS2ÞG£L are numerically consistent with the

gender counts from the register. However, the table tREGðS3ÞH£L from the overlap of S1 and S2 is

to be reweighted since it is inconsistent with the estimated tables t̂
REGðS1Þ
H and t̂

REGðS2Þ
L :

Based on the 8 ð¼ 2þ 6Þ linearly independent margins of the reweighting scheme

H þ L2, this yields

t̂
RW
H£L ¼ t̂

REGðS3Þ
H£L þ B̂ 0

w;H t̂
RW
H 2 t̂

REGðS3Þ
H

� �
þ B̂ 0

w;L2 t̂
RW
L2 2 t̂

REGðS3Þ
L2

� �

t̂
RW
H ¼ t̂

REGðS1Þ
H and t̂

RW
L2 ¼ t̂

REGðS2Þ
L2

Fig. 1. Example of micro data from the SSD, and the construction of rectangular data blocks
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Hence, neglecting the random character of the regression matrices B̂; we get in terms of

population residuals

t̂
RW
H£L ¼ tH£L þ t̂

HTðS3Þ
eðH£LÞ þ B 0

H t̂
HTðS1Þ
eðHÞ 2 t̂

HTðS3Þ
eðHÞ

� �
þ B 0

L2 t̂
HTðS2Þ
eðL2Þ 2 t̂

HTðS3Þ
eðL2Þ

� �

Now collecting the residuals for each Sk ðk ¼ 1; 2; 3Þ; we get in terms of superresiduals

t̂
RW
H£L ¼ tH£L þ t̂

HTðS1Þ
11i;H£L

þ t̂
HTðS2Þ
12i;H£L

þ t̂
HTðS3Þ
13i;H£L

11i;H£L ¼ B 0
HeiðHÞ

12i;H£L ¼ B 0
L2eiðL

2Þ

13i;H£L ¼ eiðH £ LÞ2 B 0
HeiðHÞ2 B 0

L2eiðL
2Þ

ð8Þ

Likewise, for the RW estimator of the target table G £ H £ L we have

t̂
RW
G£H£L ¼ t̂

REGðS3Þ
G£H£L þ B̂ 0

w;G£H t̂
RW
G£H 2 t̂

REGðS3Þ
G£H

� �

þ B̂ 0
w;G£L2 t̂

RW
G£L2 2 t̂

REGðS3Þ
G£L2

� �

þ B̂ 0
w;H 2£L2 t̂

RW
H 2£L2 2 t̂

REGðS3Þ
H 2£L2

� �

t̂
RW
G£H ¼ t̂

REGðS1Þ
G£H and t̂

RW
G£L2 ¼ t̂

REGðS2Þ
G£L2 ð9Þ

while t̂
RW
H 2£L2 is given by (8). Recall that Houbiers (2004) does not include H £ L in the

reweighting scheme because, strictly speaking, it is not needed to achieve numerical

consistency or to reduce the variance of the estimator. The weighting scheme she uses,

ðG £ HÞ þ ðG £ LÞ, is called the minimal reweighting scheme for this estimator; note that

table tH£L cannot be estimated from a larger survey than S3: Here, we have chosen to use

the more elaborate splitting up procedure because this allows us to demonstrate the use of

recursions in the repeated weighting procedure.

In terms of population residuals the RW estimator of tG£H£L can be written as

t̂
RW
G£H£L ¼constantþ t̂

HTðS3Þ
eðG£H£LÞ þ B 0

G£H t̂
HTðS1Þ
eðG£HÞ 2 t̂

HTðS3Þ
eðG£HÞ

� �

þ B 0
G£L2 t̂

HTðS2Þ
eðG£L2Þ 2 t̂

HTðS3Þ
eðG£L2Þ

� �

þ B 0
H 2£L2 t̂

RW
H 2£L2 2 t̂

HTðS3Þ
eðH 2£L2Þ

� �
ð10Þ
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Now it is not difficult to see, from (10) that the superresiduals for t̂
RW
G£H£L are related to

the superresiduals for t̂
RW
H 2£L2 as follows

11i;G£H£L ¼ B 0
H 2£L211i;H 2£L2 þ B 0

G£HeiðG £ HÞ

12i;G£H£L ¼ B 0
H 2£L212i;H 2£L2 þ B 0

G£L2eiðG £ L2Þ

13i;G£H£L ¼ B 0
H 2£L213i;H 2 £ L2 þ eiðG £ H £ LÞ2 B 0

G£HeiðG £ HÞ

2 B 0
G£L2eiðG £ L2Þ2 B 0

H 2£L2eiðH
2 £ L2Þ

Similar recursions can be derived when one or more elements in tx from the regression

in the second step are RW estimates from a larger block; see Appendix B.

Since S1 equals about half of the population, the variance of an estimator from S1 for a

population mean is of order 1=N: Hence, the random character of the estimators from S1
can be ignored since n2 ,, N: Therefore,

Cov t̂
RW
G£H£L

� �
¼ Cov t̂

HTðS2Þ
12;G£H£L

þ t̂
HTðS3Þ
13;G£H£L

� �

¼ Cov
i[S2

X
dðS2Þi 12i;G£H£L þ

i[S3

X
dðS3Þi 13i;G£H£L

0
@

1
A

ð11Þ

Since S3 equals approximately half of S2; the covariance of two arbitrary HT estimators

from S2 and S3 need not be negligible. In order to capture this problem, define S4 as the

difference of S2 and S3; i.e., S4 is the set of records in the LFS which are not included in the

EWS. Now we can rearrange the summations in (11) over S3 and S4; yielding

Cov t̂
RW
G£H£L

� �
¼Cov

i[S3

X
u3i þ

i[S4

X
u4i

0
@

1
A

u3i ¼dðS2Þi 12i;G£H£L þ dðS3Þi 13i;G£H£L

u4i ¼dðS2Þi 12i;G£H£L

ð12Þ

Since S3 and S4 are relatively small compared to the population, the two sample totals

on the right-hand side of (12) can be interpreted as independent HH estimators from S3 and

S4; respectively. Conditioning on their sample sizes n3 and n4, the covariance matrix of the

RW estimator of tRWS£H£L can now be estimated by

Côv t̂
RW
S£H£L

� �
¼
X4
k¼3

nk

nk 2 1 i[Sk

X
ûkiû

0
ki 2

1

nk 2 1 i[Sk

X
ûki

0
@

1
A

i[Sk

X
û 0ki

0
@

1
A

8<
:

9=
; ð13Þ

Here we used (A1) from Appendix A because the population totals of the underlying

variables
P

i[U uki=d
ðSkÞ
i ðk ¼ 3; 4Þ need not be zero. As before, the estimated sample

variates ûki are based on the estimated regression matrices B̂ in the corresponding
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formulas. For a discussion on the use of conditional sample sizes, see among others Holt

and Smith (1979) and Knottnerus (2003, pp. 133–135).

Finally, some remarks are in order. All data from the EWS, the LFS and the register

are extracted from the social-statistical database and gathered together in the database

for the Structure on Earnings Survey. As stated before, the population in SES consists

of jobs, whereas EWS is a business survey and LFS is a household survey. Due to

these and other complicating factors, the proper inclusion probabilities for the jobs in

S1; S2; and S3 were missing in SES. Hence the proper design weights dðSkÞi are unknown

ðk ¼ 1; 2; 3Þ: For this reason we used the actual regression weights wðSkÞ
i in the

formulas for the variance estimator instead of the dðSkÞi : This will hardly have any

effect on the variance estimators because the RW estimator is a linear combination of

regression estimators from various samples. Furthermore, using g-weights according to

Särndal et al. (1992, p. 235) in the estimation procedure for variances in combination

with the dðSkÞi is equivalent to the direct use of the regression weights wðSkÞ
i as can be

seen from (6); note that for an arbitrary sample digiei ¼ wiei: However, when sample

sizes are large, the use of the g-weights is of little interest. Hence the use of wðSkÞ
i

instead of the dðSkÞi will hardly affect the variance estimator in the RW estimation

procedure described here. Moreover, for smaller samples the use of the g-weights is

recommended.

5. Simulation Results

In order to test the RW estimator under various conditions, a number of simulations were

performed. In these simulations, samples were drawn from an artificial population of 6.4

million jobs, which was generated from the Dutch Structure of Earnings Survey. In Van

Duin and Snijders (2003) results are presented for the bias and variance of the RW

estimator of the quantitative table average monthly wage by G £ H5 £ L; where H5

represents a more detailed classification of the variable working hours than H, with 5

instead of 2 classes (hierarchically related to H). The bias and variance were obtained both

for the case of minimal repeated weighting and for the splitting up procedure. It was found

that, except for very small sample sizes, repeated weighting only resulted in very limited

additional bias compared to the standard regression estimator. The estimator for the

splitting up procedure was found to yield no larger bias than the one for minimal repeated

weighting. The additional calibrations on previously estimated table margins resulted in a

smaller variance for the RW estimator than for the standard regression estimator. The RW

estimator for the splitting up procedure was found to have a somewhat larger variance than

the one employing minimal repeated weighting. However, this difference was much

smaller than the difference in variance between the standard regression estimator and the

minimal RW estimator.

In the same set of simulations, we also looked at the performance of the variance

estimators described in the preceding sections by comparing them with the “actual”

variances as obtained from the simulations. For simplicity, we only considered minimal

repeated weighting. We present here the results for three different situations for the

frequency table G £ H5 £ L: Because only minimal repeated weighting was used, the

marginal table H5 £ L was not included in the table set.
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Simulation 1. The data set consists of a register and two independent simple random

samples, both of size 100,000. Survey 1 contains the variableH5; survey 2 the variablesH5

and L. In the notation of Section 3, H5 now plays the role of Z, and L that of Y. The RW

estimator for the target table is given by (10), with the following adjustments

. we have H5 instead of H (and hence 70 table cells instead of 28)

. the table H5 £ L is not estimated and is omitted from the weighting scheme of the

target table

. estimates from S1 in (10) are in this case from S1 < S2, estimates from S2 or S3 are

now from S2.

Since S1 and S2 are drawn with the same sampling scheme, they are given the same weight

in S1 < S2 : l1 ¼ l2 ¼ 1=2; see (1).

Simulation 2. The samples are drawn with nonconstant inclusion probabilities pi using

Poisson sampling. The sample sizes are approximately the same as in simulation

1: Eðn̂1Þ < Eðn̂2Þ < 100; 000: Even though Poisson sampling is not a fixed-size scheme,

the variance formulas derived in the previous sections are also applicable to this

simulation. This is the case because the estimators that are considered in the simulation are

calibrated on the population size, which corrects for the variance contribution from n̂;

provided that pi ,, 1 and n .. 1: The inclusion weights for S1 are taken from a much

narrower distribution than those for S2: The squared coefficients of variance for the

weights in the two samples are given by

L1 ; d ðS1Þ
2
=d ðS1Þ

2
2 1 ¼ 0:3; L2 ; d ðS2Þ

2
=d ðS2Þ

2
2 1 ¼ 4:6

Consequently, the quality of the two samples is not the same, even though they have

the same average size. It is important to take the quality difference into account when

determining the relative weights of the two samples in S1 < S2: Kish (1992) argues

that, if the target variable and the weights are weakly correlated, the effect of

nonconstant weights on the sampling variance can be taken into account by replacing

the sample size n with an effective sample size neff ¼ n=ð1þ LÞ: We estimate the

sampling variances for S1 and S2 through this procedure and fix the relative weights of

these samples in S1 < S2 by requiring that the sampling variance for estimates from

S1 < S2 is minimized (we use the fact that the covariance of estimators from S1 and S2
can be neglected, since these samples are small and drawn independently). This results

in lp ¼ neff; p=ðneff; 1 þ neff; 2Þ, with p ¼ 1; 2:

Simulation 3. This simulation mimics the Structure of Earnings Survey, which was

discussed in Section 4. S1 is drawn with Poisson sampling using the inverse EWS weights,

and S2 is drawn using weights with the same distribution as those of the LFS.

(The clustering-effects resulting from the fact that the LFS is a household survey and not a

survey of jobs were not addressed in this simulation.) S1 contains 2.8 million elements

(half the population), S2 approximately 100,000. The target table is estimated from

S3 ¼ S1 > S2; which contains about 50,000 elements. S3 has a very large variance of the

inclusion weights, which it inherits from S1. As a result neff; 3 is only about 5,000. S2 has an

effective size that is only somewhat reduced: neff; 2 < 77; 000:
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The target table estimator is given by (10), with H replaced by H5 and with H5 £ L

omitted from the weighting scheme. The variance estimator is given by (13) with the

appropriate modifications.

For each simulation, the relative bias in the standard error estimator for each cell is

determined from

DSêrp ¼

1

R

X
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr t̂

RW p
G£H5£L;r

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2 1

X
r

t̂
RW p
G£H5£L;r

2
1

R

X
r

t̂
RW p
G£H5£L;r

 !2
vuut

2 1 ð14Þ

where r denotes the simulation run, R the number of runs (600) and p the table cell

ð p ¼ 1; : : : ; PÞ:Due to the finite number of simulation runs, (14) is not the exact bias but

an estimate. It has an approximate 95% margin of ^0:06: This follows from the

assumption that t̂
RW p
G£H5£L;r

is approximately normal with variance s2
RW : Denoting the

variance estimator in the denominator in (14) briefly by V̂
sim

RW , it follows from standard

statistical theory that for R!1

ffiffiffiffiffiffiffiffiffiffiffiffi
R2 1

p V̂
sim

RW

s2
RW

2 1

 !
! Nð0; 2Þ

in distribution; see e.g., Knottnerus (2003, p. 298). Hence, by a Taylor series linearization

ffiffiffiffiffiffiffiffiffiffiffiffi
R2 1

p sRWffiffiffiffiffiffiffiffiffi
V̂

sim

RW

q 2 1

0
B@

1
CA! N 0;

1

2

� �
ð15Þ

in distribution, from which it follows that the 95% margin of DSêrp is approximately

^0:06 ½¼ 1:96=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðR2 1Þ

p
�: Note that these margins are not affected by replacing sRW in

the numerator of (14) by an estimator ŝRW with variance of order N 2=n2R because the

denominator has a variance of order N 2=nR: The latter result follows from a Taylor series

expansion of (15) which yields

Var

ffiffiffiffiffiffiffiffiffi
V̂
sim

RW

q
sRW

0
@

1
A ¼

1

2ðR2 1Þ
with s2

RW ¼ O
N 2

n

� �

Journal of Official Statistics578



Hence, Var

ffiffiffiffiffiffiffiffiffi
V̂
sim

RW

q� �
¼ OðN 2=nRÞ: In addition, the variance of the estimator ŝRW in

the numerator of (14) is of order N 2=n2R because

VarðŝRW Þ ¼ O
1

R
Var

ffiffiffiffiffiffiffiffiffiffiffiffi
N 2s2pr

n

s0
@

1
A

8<
:

9=
; ¼ O

N 2

nR
VarðsprÞ

� 	
¼ O

N 2

n2R

� �

s2pr ;
1

n2 1

X
i[S

ð yipr 2 yprÞ
2 ð yipr ¼ ½li^h5i^gi�p;rÞ

Figure 2 shows DSêrp as a function of the effective cell size for the three simulations.

Every data point corresponds to a cell of the target table for a particular simulation. The

results clearly demonstrate the asymptotic nature of the variance estimators (7) and (13).

Their derivation relies on a Taylor linearization procedure in which the sampling variance of

the estimated regression coefficient B is neglected. This procedure works well for large

(effective) cell sizes, but leads to an underestimation if the number of observations becomes

too small. In simulation 1, the smallest cell size is 51 and no structural bias in the variance

estimator is found. In simulations 2 and 3, effective cell sizes as low as 1 occur, which leads

to a serious negative bias. (Although simulation 3 mimics the SES, the target table estimated

here is much more detailed than the ones estimated in the SES.) The data points for the three

simulations follow broadly the same curve. Apparently, the effect of nonconstant inclusion

probabilities on DSêr is taken into account well by replacing n with neff (for this particular

estimator). Also, it does not seem to affect DSêr whether the table is estimated from a union

or an intersection of samples, and hence whether the variance estimator (7) or (13) is used.

We do expect DSêr to depend on the calibration scheme of the target table. The same

scheme was used in all three simulations. If fewer calibrations were included, the value of

neff where the linearization procedure breaks down could shift downward.

The negative bias at small cell sizes is not specific to the RW variance estimator. In fact,

the linearized variance estimator for the regression estimator (2) suffers from the same

Fig. 2. Relative bias in the standard error estimator for cell-counts of the target table G £ H5 £ L in the three

simulations
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problem. Because the RW estimator involves a large number of calibrations, the negative

bias for small samples is likely worse than for (2). However, Boonstra (2004) argues that

this can be compensated by the smaller variance of the RW variance estimator and that,

consequently, the mean squared errors of the variance estimator for RW and for the

regression estimator are often comparable.

6. Discussion and Further Research

Technically speaking, repeated weighting amounts to a further cosmetic adjustment of the

commonly used regression weights wi resulting in new final weights ri: This possible

cosmetic adjustment resembles the adjustment in the regression or calibration estimator used

by many National Statistical Institutes, where the regression weights wi can be seen as an

adjustment of the starting weights ð1=piÞ: The consequence is that the final weights may vary

from table to table.

Currently, Statistics Netherlands is implementing the repeated weighting (RW)

estimator in its regular estimation process to obtain consistency among tables. Apart from

the assumptions mentioned in Section 2 it also is important for applying this RW

estimation procedure to have an appropriate metadata system underlying the micro

databases from the surveys and available registers. For instance, Statistics Netherlands has

a software tool, called VRD, for the collection of tables related to a given target table. Such

a tool is necessary when there are many multidimensional tables to be estimated with

variables with many different (hierarchical) classifications or variables like income in

either categorical or quantitative form.

This article focuses on classification variables in order to avoid a number of

complications caused by the use of quantitative variables. A complicating factor for the

latter type of variables is that a quantitative variable, such as income, can be used both as a

classification and as a quantification variable. A problem that may arise in this context is

the consistency of a table on total income per income class. That is, the mean income of a

low income class must be lower that the mean income of higher income classes. This

problem may arise when the number of persons in an income class is estimated

independently; see Renssen et al. (2001). Another problem is the treatment of edits of the

form: i) the number of persons in a certain region with a driver’s licence cannot exceed the

number of persons who are 18 or older in that region, or ii) costs plus profits must be equal

to the turnover of all enterprises. Van de Laar (2004) points out how this kind of edits can

be incorporated in the RW estimation strategy. Although the RW estimation procedure

becomes somewhat more complicated, the same variance formulas can be applied.

Different simulations indicate that compared to the variance estimator of the regression

estimator the (negative) bias of the variance estimator of the RW estimator slightly

increases but both the variance and the mean squared error of the RW variance estimator

decrease provided that the effective sample sizes are not too small. In practice the

numerical differences between the splitting up and minimal weighting procedures are

small. The former has only a somewhat larger variance than the latter. However, this

difference is smaller than the difference in variance between the standard regression

estimator and the minimal RW estimator provided that the cell size is large enough.

Further research is needed to investigate various methods for improving the variance

formulas in the case of small cell sizes.
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Appendix A: Variance Estimators for the Hansen-Hurwitz (HH) Estimator

Consider a sample S of n independent drawings y1; : : : ; yn with replacement from a

population U of N numbers Y1; : : : ; YN : For each drawing the drawing probabilities are

p1; : : : ; pN : The Hansen-Hurwitz estimator of population total tY and its variance are

given by

t̂
HH
Y ¼

1

n i[S

X yi

pi
¼

i[S

X
diyi di ¼

1

npi

� �

Var t̂
HH
Y

� �
¼

1

n i[U

X
pi

Yi

pi
2 tY

� �2

respectively. The variance can be estimated unbiasedly by

Vâr t̂
HH
Y

� �
¼

1

nðn2 1Þ i[S

X yi

pi
2

1

n i[S

X yi

pi

0
@

1
A

2

¼
1

ðn2 1Þ

1

n i[S

X yi

pi

� �2

2
1

n i[S

X yi

pi

0
@

1
A

28<
:

9=
;

¼
n

n2 1 i[S

X
ðdiyiÞ

2 2
1

n2 1 i[S

X
diyi

0
@

1
A

2

In other words, writing the HH-estimator as t̂
HH
Y ¼

P
i[S ai with ai ¼ diyi; its variance

can be estimated by

Vâr t̂
HH
Y

� �
¼

n

n2 1 i[S

X
a2i 2

1

n2 1 i[S

X
ai

0
@

1
A

2

When yi is a random P-vector corresponding to a categorical variable Y, the

corresponding covariance matrix of t̂
HH
Y becomes

Côv t̂
HH
Y

� �
¼

n

n2 1 i[S

X
aia

0
i 2

1

n2 1 i[S

X
ai

i[S

X
a 0i

0
@

1
A ðA1Þ

We use (A1) in Sections 3 and 4. If we have prior knowledge that tY ¼ 0; an unbiased

estimator of the covariance matrix is

Côv t̂
HH
Y

� �
¼

i[S

X
d2i yiy

0
i ðA2Þ
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This is of interest for the estimator of the covariance matrix of a vector regression

estimator with a constant among the auxiliaries in xi so that

i[U

X
ei ¼

i[U

X
ð yi 2 B 0

xxiÞ ¼ 0

Bx ¼
i[U

X
xix

0
i

0
@

1
A

21

i[U

X
xiy

0
i

Note that ColðEÞ ’ ColðXÞ and hence, te ¼ 0 provided iN [ ColðXÞ; where iN is an N-

vector of ones, E is the N £ P matrix of residuals, X the N £ J matrix of auxiliaries, and

Col(.) stands for the column space spanned by the columns of (.); see Knottnerus (2003,

p. 25). Also note that in practice B is to be replaced by its estimator B̂d;x; leading to

Côv t̂
REG
Y

� �
¼

i[S

X
d2i êiê

0
i ðêi ¼ yi 2 B̂ 0

d;xxiÞ ðA3Þ

Appendix B: Recursions in the Case of Estimated Totals Among the Auxiliaries

In this appendix, we consider the situation described in Section 3 with two independent

samples and a register. In addition, we assume that, quite generally, some elements in the

vector tx; used for the regressions in block S2; are RW estimates from S12: We write this

preceding RW estimator in terms of superresiduals as

t̂
RW
x ¼ tx þ

i[S1

X
dðS1Þi 11i;x þ

i[S2

X
dðS2Þi 12i;x

Neglecting the random character of the estimated matrices B̂ in the remainder, the

regression estimator for an arbitrary frequency table tV from S2 can be written as

t̂
REGðS2Þ
V ¼ t̂

HTðS2Þ
V þ B 0

V ;x t̂
RW
x 2 t̂

HTðS2Þ
x

� �

¼ tV þ t̂
HTðS2Þ
eðVÞ þ B 0

V;x t̂
HTðS1Þ
11;x

þ t̂
HTðS2Þ
12;x

� �

BV ;x ¼
i[U

X
xix

0
i

0
@

1
A

21

i[U

X
xiv

0
i

ðB1Þ

Consider now the RW estimator for tY from S2 with the initial regression estimators

being based on t̂
RW
x : That is,

t̂
RW
Y ¼ t̂

REGðS2Þ
Y þ B 0

Y;m t̂
RW
m 2 t̂

REGðS2Þ
m

� �
ðB2Þ
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where according to (B1) the regression estimators are given by

t̂
REGðS2Þ
Y ¼tY þ t̂

HTðS2Þ
eðYÞ þ B 0

Y ;x t̂
HTðS1Þ
11;x

þ t̂
HTðS2Þ
12;x

� �

t̂
REGðS2Þ
m ¼tm þ t̂

HTðS2Þ
eðmÞ þ B 0

m;x t̂
HTðS1Þ
11;x

þ t̂
HTðS2Þ
12;x

� �
ðB3Þ

Furthermore, by construction, the estimate t̂
RW
m from the preceding tables can be written

as

t̂
RW
m ¼ tm þ t̂

HTðS1Þ
11;m

þ t̂
HTðS2Þ
12;m

ðB4Þ

Substituting (B3) and (B4) into (B2) gives

t̂
RW
Y ¼tY þ t̂

HTðS2Þ
eðYÞ þ B 0

Y;x t̂
HTðS1Þ
11;x

þ t̂
HTðS2Þ
12;x

� �

þ B 0
Y ;m t̂

HTðS1Þ
11;m

þ t̂
HTðS2Þ
12;m

2 t̂
HTðS2Þ
eðmÞ 2 B 0

m;x t̂
HTðS1Þ
11;x

þ t̂
HTðS2Þ
12;x

� �n o
ðB5Þ

On the other hand writing t̂
RW
Y in terms of superresiduals

t̂
RW
Y ¼ tY þ t̂

HTðS1Þ
11;Y

þ t̂
HTðS2Þ
12;Y

ðB6Þ

it follows from comparing (B5) and (B6) that the superresiduals for Y from the reweighting

step obey the recursions

11i;Y ¼ðB 0
Y;x 2 B 0

Y ;mB
0
m;xÞ11i;x þ B 0

Y;m11i;m

12i;Y ¼ðB 0
Y;x 2 B 0

Y ;mB
0
m;xÞ12i;x þ B 0

Y;m12i;m þ eiðYÞ2 B 0
Y;meiðmÞ
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