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Weighting for Unequal P,

Leslie Kish'

Abstract: Four distinct sources for unequal
selection probabilities P, of elements are dis-
tinguished concerning their origins, their
effects, and their need for weights k; oc 1/P,.
Three other types of weighting for esti-
mation are also identified. Survey sampling
theory is for unbiased estimation with
weights k; but model based theory is against.
The main disadvantage of weighting is
the increase in variances from S?/n to
S%2(1 + C}H)/n for weighted estimates j,,
where C? is the relvariance of the k;. This is
balanced against the increase of the mean
square error of the unweighted estimate j,

1. Introduction

Fundamental questions about weighting
seem to be the most common during the
analysis of survey data and I encounter
them almost every week, requiring prompt
and practical actions. The requests come
from social researchers of all kinds. But I
cannot find textbooks or references for
them, because we “lack a single, reasonably
comprehensive, introductory explanation of
the process of weighting” (Sharot 1986),
readily available to and usable by survey
practitioners, who are looking for simple
guidance, and this paper aims chiefly to
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from S?/n to (S*/n + R;,C?S®), where
R, C,S is the bias =j, — j, of j,. This
comparison of the mean square errors is
explored for reasonable choices between y,
and j,. Very recently (1990-91) some com-
promises are being suggested, especially
“trimming” extreme weights, and “‘shrink-
age” estimators. The problem becomes dif-
ficult for multipurpose surveys, which are
much more common than a single purpose
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meet some of that need. Some partial treat-
ments have appeared in the survey literature
(e.g., Bailar, Bailey, and Corby 1978; Kish
1965, 11.7, 1987, 7.4, 1989), but the topic
seldom appears even in the indexes. How-
ever, we can expect growing interest, as
witnessed by many publications since 1987
listed in the references. With their con-
centrations and with their style they aim at
technical statisticians, whereas I address
social researchers and statisticians who
want advice for applied problems.

This paper aims to help researchers to
find reasonable solutions to practical prob-
lems of weighting their data. Here follow
some typical questions posed to sampling
consultants by client researchers concerned
with their data of sample cases. (a) Now that
you (or we) have found that the cases had
different selection probabilities (7;), should
these data be weighted by w; o«c P~ (b) In
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which situations is it ““proper,” or “necess-
ary,” or ‘“‘important” to weight data?
(c) Should we weight for nonresponse
rates (1 — r,) which differ between classes
h in the data? (d) When does weighting
make a considerable difference in esti-
mates? (¢) How can we calculate proper and
accurate weights? (f) How can we apply
weights to cases, tapes, and estimates? (g)
How do we apply weights in formulas and
software?

The long neglect of weighting as a distinct
topic in statistics textbooks reveals an
interesting schism in our literature, I pro-
pose. Most of statistics deals with identically
and independently distributed (IID) random
variables, where differential weighting need
not occur as a topic. On the other hand,
sampling methods deal mostly with selection
procedures; and this concentration is
realistic, because in practice the statistical
analysis of survey data is often removed in
time and personnel from the selection pro-
cess. But definitions of sample design often
include both selection and estimation, and
the two aspects cannot be completely
separated. Weighting clearly pertains to
estimation but it is also related to selection
probabilities. Nevertheless, and despite
their emphasis on ‘“‘unbiased estimators,”
most sampling books refer to weighting
only separately in connection with two or
three distinct problems.

Some kind of weighting is frequently
involved in the analysis of many survey
reports, and ad hoc explanations appear
sometimes, usually hidden in appendices
behind project reports. On the other hand,
we can also find articles with theoretical
discussions that are concentrated only on
some single specific aspect of weighting,
~ such as stratification, or post-stratification,
or nonresponses, or variance reductions.

We can also encounter misleading state-
ments, even among some theoretical dis-
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cussions based on diverse models, which are
opposed to weighting. Researchers with
sample data based on unequal selection
probability must face the question whether
to use weighted estimates like y, = Zw,y;/
Zw; or simple unweighted (equal weighted)
estimates like y, = Xy,/n. They are often
confused by misleading statements resem-
bling those below, though these are extreme
forms of common misconceptions. (a)
Weighting data by w; oc P~ is a “simple”
process that should be ‘“always” applied to
samples with unequal P;s (according to
“design-based” theory). (b) We cannot find
any justification for weighting in “model-
based” theory. (c) Weighting is needed for
means (like 7,) but not for testing hypoth-
eses or for regressions, because these are
model-based. (d) It is unethical to weight
sample cases, because the process can be
misused to produce biased results. We can-
not fully explore all the deep implications of
such misleading statements. Rather, we
address the practitioners who want to know
WHY, WHEN, and HOW to weight their
data.

I must avoid those arguments in this
simple and brief treatment, which aims
to be general and useful (but see Brewer
and Mellor 1973; Hansen, Madow, and
Tepping 1983). In order to satisfy those
two criteria, to be both simple and general,
I had to forsake any attempt at profundity
and precision. Anybody who tries to satisfy
all three criteria of simplicity, generality,
and profundity is bound to fail, probably
on all three, I believe. Greater length
would be especially needed to also treat the
technical subjects of “optimal” weights for
estimation. But here, as in the references
cited, we are concerned with questions
of whether and how to compensate with
inverse weights for unequal selection pro-
babilities, as clarified in Section 2. The basic
problem is most simply stated by Spencer
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and Cohen (1991) in introducing “shrink-
ing” for a compromise (but their unweighted
Z, is my y, and their unbiased Z, is our
.}-) W):

“A longstanding question in making
_inferences from unequal probability samples
is whether to use an unweighted or other
model-based estimator, say Z,,, or whether
to use an approximately unbiased estimator
Z, that uses sampling weights reflecting the
unequal selection probabilities. (Moments
are defined with respect to the sampling
design unless otherwise noted.) An
unweighted estimator of a population mean
often will have smaller variance than a
weighted estimator but it will have a bias
proportional to the correlation between the
characteristic of interest and the sample
weights (Rao 1966). For many sampling
strategies, the variances of Z,, and Z, alike
decrease to zero as the sample size increases,
but although the bias of Z, is zero or
approaches zero the bias of Z,, does not. In
such cases, for sufficiently large samples Z,
will have smaller mean square error. On the
other hand, for small samples Z,, may have
a smaller mean square error (Cochran 1977,
p. 296-297). If one could know the mean
square errors of Z,, and Z, one could easily
choose the optimal one. Fortunately, it is
possible to use the sample itself to estimate
the mean square errors, as DuMouchel and
Duncan (1983) proposed in a different con-
text.”

2. Reasons for Weighting

I distinguish here seven separate main
sources of weighting, because they usually
have very different effects, and also because
they need different strategies and treat-
ments. Of these seven the first three arise
from different selection probabilities P; for
the sample cases. Compensatory weights
(w; o 1/P) are the main concern of this
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and many papers, and for much applied
research.

The general and most useful form of
weighting is to assign the weights w; to the
sample cases i, with w; = 1/P;. The selection
probabilities P, for all sample cases must be
known for all probability samples by defi-
nition. (Obtaining the actual numbers is
often a nontrivial but necessary task.) Then
the weighted mean is computed as
9., = Zw;y;/Zw;, and similar “consistent”
estimates are discussed in Section 3, as well
as the use of convenient weights w; oc 1/P,
permitted in averages by the “normalizing”
sum of weights (Zw;)~". The probabilities P,
may have to be computed from complex
multistage (or even multiphase) processes.
The weights may also be used to compensate
for nonresponses, so that w;, = 1/(Pr)
where r, is a response rate often calculated
for classes of response.

1. Disproportional sampling fractions f, can
be introduced deliberately to decrease
either variances or costs. Often these are
made with “optimal allocations” to
distinct strata h, according to the well
known allocation formula f, o S,/v/C;.
But they may also result from two (or
multi) phase selections. Samplers often
achieve spectacular gains in variances
(and costs) with these methods, especially
applied to surveys of establishments.
Gains in household surveys are less
spectacular and frequent, but possible
(Kish 1961). These deliberate differences
in the sampling fractions f, should be
large to be effective, by factors from 2 to
10 and even greater; smaller differences
seldom produce large enough effects to be
worthwhile (Kish 1987, 4.5; 1965 11.7).
The differences among f, should also
be highly related to survey variables. The
f, may be simple integral multiples
of a basic sampling rate f, like 2f or
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10f. These should (always) be compen-
sated with inverse weights (e.g., 1/2 or
1/10) in order to avoid bad biases in com-
bined statistics.

. Allocation to domains of different sam-
pling fractions f, happens commonly and
for distinct reasons. It is common to
increase the sampling fraction from f to
kf (k > 1) in order to reduce sampling
errors in one or more domains, especially
for small provinces. Or the rates in one or
two provinces may be reduced to flk
to save overall costs. Sometimes equal
sample sizes n* are designed for unequal
domain sizes N,, so that the sampling
rates are f, = n*/N,. These inequalities
in f, are commonly compensated with
unequal weights w, oc 1/f, = N,/n,.
However, the need for weights may not
be quite as compelling as in A, because
the weights may be less extreme, and
relations of weights for domains to sur-
vey variables less strong. Estimates for
means may be weighted but not for
regressions perhaps (Section 6).

. Frame problems may induce inequalities
in selection probabilities P, that may need
compensating with w, oc 1/P.. There are
four basic classes of frame problems
(Kish 1967, 2.7). (1) Small clusters of
unequal sizes V; are common; for example,
dwellings are commonly selected with
equal fand then a single adult from the N,
adults in the dwelling, then P. = f|N,.
Since the number of adults are mostly few
(N; = 1,2, 3,4 mostly), the biases may be
moderate for unweighted means, and the
weighted means have variance increases
of 1.05 to 1.20 mostly. In one case build-
ings were selected with equal £, then a
single dwelling with 1/N,, so that for the
dwellings P, = fIN, and the N, ranged
from 1 to 62; the biases for unweighted
estimates were large, and the variance
increase for weighted estimates was 2.6
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(Kish 1977). (2) Duplicate (replicate) Iist-
ingsmay resultin P, = d,fwhen elements
with d, listings are selected with f applied
to listings. If replications are common
and uncorrected, considerable bias may
result, and compensation with w; oc 1/d,
is needed. (3) Blanks and foreign elements
among listings selected with f cause no
inequalities if they are simply disregarded.
But a common mistake of substituting
the “next valid” listing often causes
P, = L,f where (L, — 1) represent the
invalid blanks before the valid listing. (4)
Missing units (incomplete frame, non-
coverage) refer to elements (units) missing
from the sampling frame, hence P, = 0.
Since this would mean that w, is not
defined (1/P, = 1/0), obviously other
measures are needed, and they receive
much attention, though never satisfaction.

. Nonresponses present problems that differ

from those of 1, 2, and 3, which can be
compensated with “inverse P,”” weighting.
Weights for nonresponses must involve
models or assumptions of some kind,
explicit or implicit. It is common practice
to assume implicitly that nonresponses
arise randomly within response sub-
classes, though they differ between these
subclasses. Thus differential response
rates r, are computed within those sub-
classes. Thus the sample cases receive
weights w, = 1/(P,r,). The subclasses 4 of
the sample are formed with auxiliary
variables, such as age, gender, geography,
etc. These variables must be (a) available
for response cases, (b) somehow also for
the nonresponse cases, and (c) also related
to the survey variables. It is difficult and
rare to obtain data either from the sample
or from check statistics that closely
satisfy the last two requirements safely
and to a high degree. When nonresponses
are not high, the differences between sub-
classes tend to be small, and then small
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differences in weights will not have large

effects on combined results.

For item nonresponses compensations
seem more often justified, and they are usu-
ally made with imputation (replication) of
responses (Kalton 1983a; Little and Rubin
1987; Rubin 1987). Corrections and weight-
ing for noncoverage are much more difficult
than for nonresponses, because coverage
rates cannot be obtained from the sample
itself, but only from outside sources. These
may be done with “post-stratification,” dis-
cussed below, where they more properly
belong.

The sources above concern unequal prob-
abilities of selection P, known from deter-
minate selection operations. They are the
chief subject of controversies about weighted
versus unweighted estimates. However, the
next three sources and types are motivated
by estimation, rather than selection, and use
models and auxiliary data sources. Some
may question whether “weighting” is an
appropriate term for these methods. Never-
theless the procedure can be summarized
with factors c; so that w, = ¢;/(Pr;) can be
used for the ith case. However, there are so
many possible methods that we must limit
our discussion to a few examples.

5. Statistical adjustments for improved esti-
mates have diverse names: post-stratifica-
tion, ratio estimators, and regression esti-
mators are all described in the sampling
literature, for reducing variances with
controls that were not used in the selec-
tion process. In practice, however, post-
stratification may denote a ratio esti-
mator for reducing the biases of non-
response and especially of noncoverage.
Thus the ratio estimator XX, y,/x, with
the auxiliary variable X is also N, y,/n,
in post-stratification for the population
size N; these aggregates become means
when divided by XX, or XN,. For
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example, check data from the census may
be used for correcting for age-sex-race
biases of surveys. As an extreme it adjusts
for a noncoverage of young black males
of 13% (USBC 1978, Ch V; Kish 1987,
4.7). For those methods the data and the
software must both be appraised for
integrity; large biases may be introduced
with inadequate models or data. Other
technical methods also appear in the
literature, such as weighting cases pro-
portional to their precision, w; = 1 |a?
(Kalton 1968).

. Adjustments to match controls can have a

variety of motivations. Whereas the
reasons under 5 for post-stratification
and ratio estimation concerned mostly
sampling variations, here we refer mostly
to adjustments of samples from one
frame population to some other target
(standard) population(s), often known as
standardization. For example, a sam-
ple from one province (state) may be
reweighted to the national population
(Kish 1987, 4.5). Or we may reweight
samples from one country or period to
another country or period. Generally, the
subclasses of the sample are reweighted to
the domains of the target population, and
these controls must be available both for
the sample and for the target population.
If there are too many cells, the control
data may be unavailable and the sample
cases too few for stability, and then
marginal adjustments may be used, with
iterated fitting.

Reweighting may also be used to
examine differences, like (j, — y,) of
two (sub)populations (a and b) free from
the effects of the different “‘compositions”
(N,. and N,,) of the two populations in
strata h (Kish 1987, 4.51D).

Adjustments of nonprobability sam-
ples to fit check data in subclass cells,
(e.g., age, sex, and province) are also
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made. These adjustments can hardly
overcome the biases of nonprobability
selections within the subclasses. They
may be viewed as similar to “quota’ sam-
pling, but with weighting substituted for
selection.

7. Combining samples is becoming more
popular, more important, and more feas-
ible because of increasing numbers of
samples that are available for combi-
nations. All combinations concern
weighting in some form, and one should
always be explicit about the weights; and
also careful about possible differences
in measurements. We note also that any
national sample combines diverse
domains, some like provinces, some like
diverse social or demographic classes;
and all those domains differ in the distri-
butions of the survey variables. Now-
adays, one may also combine standard-
ized national samples from several coun-
tries, e.g., African birth rates from
separate national samples of the World
Fertility Surveys. Similarly to spatial inte-
gration, we may also combine periodic
samples into rolling samples integrated
over a longer time span; e.g., annual
averages of influenza, or cancer rates, or
unemployment, or incomes from weekly
or monthly surveys (Kish 1990). Meta-
analysis is a growing field for combining
statistics, and already foreshadowed in
1924 by Yates and Cochran (1938). A
special and simple method of combining
can be the cumulations of individual cases
(Kish 1987, 6.6).

3. Methods for Implementing Weighting

Four alternative procedures for weighting
need individual attention because they
require different techniques and also
because they can have different effects on
the variances.
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1. Individual case weights (ICW) yield the

most common, simple, practical, and flex-
ible procedures, especially with modern
computers and programs that can handle
them. (Not all programs: are equally
adept.) The other procedures may be
compared with and based on ICW, and
they may increase variances more than
ICW. The weights w, for sample elements
(J = 1,... n) may reflect a product it
of the element probabilities p; from com-
plex statistical multistage selections with
the response rates r;, which may also
include coverage rates. The weights w; =
1/(p;r;) are inversely proportional to
these products. Both p; and r, should be
available for all elements of probability
samples, and newcomers to surveys must
be made aware that those values must be
obtained with careful bookkeeping. It is
also possible to incorporate weights W,
for post-stratification (ratio) estimators
so that w/ = W,/(p;1)).

The basic statistic is the weighted sum
of sample values Zw,y, = Zy;/p;- Thisisa
desired unbiased estimator of the popu-
lation sum XY, = Y = NY. For equal
probability selections, or epsem, of n
from N elements (whether simple random
or more complex), f = n/N, we have
the expected value Exp(Zy,/f) =
ZExp(y;N/n) = Z¥N/n = NY =Y.
For weighted estimates we also have
Exp(Zy,/p) = NY = Y. This is shown
in all sampling books, sometimes as a
“Horvitz-Thompson” estimator (Coch-
ran 1977, 9A.7; Kish 1965, 2.8C). This
simple expansion estimator is basic to
probability sampling and should perhaps
be called an “expectation estimator.” In
practice it is seldom used in this simple
form and it needs adjustment for non-
responses, so that w; = 1/(p;r;).

The most common statistic is, the
weighted mean j, = Zw;y;/Zw;. This is
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Table 1. Disproportionate allocation to illustrate weights

Wi N, T Ty n, 1/w, Wi Wity
.900 90,000 .01 .90 810 .009 111.111 90,000
.09 9,000 .10 .85 765 .085 11.765 9,000
.01 1,000 1.0 8 800 .80 1.25 1,000

1.00 100,000 = N Zw;n, = 100,000

A population of N = 100,000 elements was divided into three highly unequal strata of N,
elements. The disproportionate selection rates f, applied and the different response rates r,
obtained result in In, = 2,375 observations. From p;r; = 1/w; in the three strata the
weights w; = 1/(p;r;) are obtained. Note that Zw; = w;n, = N, exactly for each stratum,
though in practice minor irregularities would cause small variations. For random variables
Y, we do not get the Y, exactly, but we get the expectation E(Zwyy,) = Y.

not “unbiased” technically (because itis a
ratio estimator) but it is “consistent’as
are the other similar statistics. Thus with
Zw,y}[Zw; — 2, for the element variance;
also with Zw;y,x;/Zw; replacing Zy;x;/n
from epsem selections. Because they are
normalized (standardized) with Zw;, the
weights can be any positive numbers pro-
portional to the expansion weights
1/(p;r;). It may help to note that for
epsem selections we have the expansion
weights w; = 1/f = N/n and Zw; = N;
whereas in common formulas w; =
flIf = 1 and Zw; = n.

When we can find appropriate,
unbiased, and dependable values of N,
for the population, the sampling fractions
n,| N, in domains 4 can be used sometimes
for w; = N,/nm,, and this is justifiable
when the elements j are selected with
actual equal probabilities within the
domains 4. On the other hand, in many
situations the selection probabilities f,
must be applied, because reliable N, are
not available. However, it is misleading
to confuse a mere fraction of elements in
the sample with a true sampling prob-
ability; e.g., that a sample of n, is selected
from a population of N, one may perhaps
refer to a sampling “fraction” of n,/N,,.
But probabilities of selection must be jus-

tified with probability operations: other-
wise we are faced with judgment samples,
“quota” samples, and other model
dependent sampling.

2. Weighted statistics, e.g., 3, = ZW, ¥,

combine separate subpopulation stat-
istics y, with appropriate relative weights
W,, with ZW, = 1. This method may be
preferred over ICW for: (a) combining
published statistics when individual cases
are not available; (b) combining a few
strata based on disparate selection pro-
cedures; and for (c) relatively simple sta-
tistics, like means or totals. But they are
not as useful for complex analyses of
single surveys. Dependable weights W,
are needed from justifiable sources. These
can also be used as w; = W, with the
ICW, as above.

3. Duplication of cases may be used instead

of ICW in order to prepare self-weighting
tapes for convenience in some situations. .
It is especially convenient for item non-
responses, and particularly for complex
analytical statistics, because both reasons
hinder individual weights (Kalton
1983a). Some compromise between ran-
dom selection and “closest” matching to
reduce bias is generally used for dupli-
cation within subclass cells. If the res-
ponse rate is r, in cell &, (1 — #,) cases
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can be duplicated to fabricate (1 — r,)
pseudo cases; either randomly selecting
with probability (1 — r,)/r, or by finding
the “closest” matching of that fraction of
cases. Duplication increases variances
over individual weighting ICW, but those
increases are not great for duplicating
only a small proportion of the samples.
Furthermore, these increases of variances
can be almost eliminated with procedures
of “multiple replications” (Little and
Rubin 1987; Rubin 1987).

We must caution against the crude mis-
take of accepting from the computing
programs the tape counts (or card
counts) m, which contain (m-n) replicates
as well as » genuine cases. The n genuine
cases can be “tagged” for counting. But
the “‘effective number” may be further
diminished by duplication to »n’ =
n/(1 + L), as noted in 4.2.

. Elimination of cases can be justified in
some situations, although throwing away
information may appear statistically
criminal and is seldom practiced. Never-
theless, consider three justifiable situ-
ations. (a) Large samples have been
selected with different sampling rates for
a nation’s several provinces; then a self-
weighting sample is designated for com-
plex national analysis, with rates suited to
the lowest provincial rates; ‘“microtape”
samples can be made self-weighting. (b)
A small domain has been greatly over-
sampled for separate analysis, but a pro-
portionate sample has been ‘“‘tagged”
from it for joint complex analysis, which
could be difficult and not much more
precise with the extra cases from the small
domain. (c) Eliminating a small propor-
tion of cases (say <.05) increases the
variance only little more than duplication
of a similar proportion. This counter-
intuitive result can be used for com-
promise adjustment for differential non-
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responses between strata (Kish 1965,
11.7B).

Reasons Against Weighting

. Complications often arise from weighting,

even when good computing programs are
available, and this factor is often neglected
and difficult to quantify. That is why I put
it first, though it should not be the most
important. Mistakes arise in the man-
machine system and they tend to increase
for more complex analyses. Other com-
plications are more basic: for complex,
analytical statistics, and for inferential
statistics, such as tests of significance,
adequate methods may not be available
for weighted estimators or for their sam-
pling errors. Theoretical contributions
are now fast developing, but they are not
useful, general, and simple enough to be
“available” for many survey practitioners
(Kott 1991a, b; Rao and Scott 1981).

. Increased variances can result from

weighting for random, or haphazard, or
irregular differences in selection prob-
abilities, when these are not “optimal.”
For example, the inequalities due to
frame problems or to nonresponses are
generally of this kind. Furthermore, these
increases of variances (unlike those due to
clustering) tend to persist undiminished
for most such subclasses and for all stat-
istics, as if they were to increase the ele-
ment variances from ¢? to (1 + L)o? or
to decrease the ‘“‘effective” number of
elements from n to n/(1 + L). Here L
denotes relative loss, so that L = 0.8
means a factor of 1 + L = 1.8 increase
in the variances, explained below.
“Haphazard” sources of weights are
most common in survey work, but they
are counterintuitive to minds attuned to
“optimal allocation,” source 1 in Section
2. Those weights are highly related to
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stratum values j, and o,. But (1 + L)
refers to other sources (2, 3 and 4), small
domains, frame problems, and nonres-
ponses, which are hardly related (nega-
tively or positively) to most survey varia-
bles. Therefore the best summary mea-
sure of their effect is a relative increase of
(1 + L) in variances, a statement based
on much experience in multipurpose sur-
veys. For example, even a sample with
optimal allocation for mean incomes and
assets turns out to be less efficient than
proportional allocation for buying beha-
vior and even for median income and

assets in the same sample (Kish 1961;

Verma, Scott, and O’Muircheartaigh

1980).

Three simple formulas yield adequate
estimates of the increases (1 + L) in ele-
ment variances. The choice between these
three alternatives depends on the situ-
ation and the data available for the
weights to be used. In these formulas N,
represent population sizes and n, sample
sizes for strata h, and W, = N,/XN, and
w, = m,/Zn, denote relative sizes, so
that ZW, = Zw, = 1. The weights are
represented by k,, which can be 1/f,, the
inverse of the selection rates, but they
may be only relative values proportional
to them, k, oc 1/f,. I use k, or k; for w;
here for easy comparison with references,
where 4.1 to 4.5 are derived (Kish 1967
11.C, 1976, 1988).

a. In the design stage one may consider
using sampling fractions and weights
in the proportions k, in strata with
relative sizes W,. If the element vari-
ances are roughly equal (o} ~ o’
approximately) then the variance of
the mean (and many other statistics)
will increase approximately by the
factor

A+ L) = CEWk)EW/k).
4.1
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b. In the analysis stage, if n, cases have
weights k,, the increase in the vari-
ance (with conditions as above) is
approximately

1+ L) = ZnZn,ki[(Zn,k,).
4.2)

For individual element weights k;
when n, = 1 for all n cases (4.2)
becomes simply

(A + L) = nZiR/Cky.  43)

Note also that the relative increase or
loss L may be viewed as the relvariance
cv® = variance/ mean’ of the relative
weights k;, because

0 = nZK/(Ek) — (Zk;)/(Zk;)?
= (1+L—1=L (44

Thus the factor 1 + cv* =1+ L
depends on the relative variances of
case weights k;. It serves as good pre-
caution to compute the cv* or 1 + L,
or the frequency distribution of the
weights to estimate what the increase
may be.

c. When the population sizes N, and sam-
ple sizes n, are both directly available
they can be used directly without the
relative weights &, to compute

1+ L = CENn)n/N~  (4.5)

. Lower mean square errors (MSE) may be

achieved by unweighted, biased esti-
mators, such as means j,. Comparisons
with weighted means j, can be based
on MSE (7,) = S*(1 + B?/S?) versus
Var(7,) = S?(1 + L). The bias ratio
B/S for j, can be estimated from the
ratios ( §, — j,)/ste( 7,) computed from
survey data for several (many) survey
variables.

Similarly, the factor (1 + L) can be
estimated with (1 + C?) from the sample
with (4.3) or anticipated in the design
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with (4.1), and this increase in the vari-
ance is rather constant for most statistics.
The factor C} is also important for B?/S>
(4.8), but these bias ratios differ greatly
for diverse survey variables of the same
survey. Furthermore for subclasses and
their comparisons the variances are much
higher, hence the ratios much lower
(Section 7).

4. Model dependent arguments have been
advanced that weighting corrections
for selection biases are not needed for
regressions from surveys (Brewer and
Mellor 1973; Hansen, Madow, and
Tepping 1978).

5. Public relations or ethics may also hinder
overt and differential weighting, because
it is possible to misuse it to produce sub-
jectively desired, prejudiced results
(Sharot 1986). For example, the com-
bined mean j, = TW,j, could be made
to approach any of the components p,
with extreme weights W,. Journalists,
alas, do this commonly, by using the cost
of either automobiles and TV sets, or
housing and health care to contrast the
cost of living in economies with contrast-
ing price systems. The naively prejudiced
weights tend to escape the public’s
scrutiny, but any explicit weighting sys-
tem suffers from exposure, unfortunately.

5. Balancing Variance Increases Against
Biases

We saw that the ratio of increase of vari-
ances due to (haphazard) weighting can be
computed as

1+ L =1+C =1+ o2k

(5.1
from the data (4.3) or anticipated in the
design (4.1). This has been shown to be true
generally for departures from optimal allo-

cating in linear sample designs (Kish 1976).
The relative bias —B = (¥, — Y,)/¥, of
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unweighted samples can also be estimated
from the sample data. But it is remarkable
and useful that these biases for means can
also be shown to depend on the same C?,
and on the correlation R,; between the
weights and the survey variables (Kish 1987,
7.4.12). Thus:

—Bias = ¥, - ¥, = Zyk/zk - 7,
= k7' [N"'Zyk, — kY]
= k~'Cov (k)

= E—leyO'kO'y, (5.2)

where £ = Zk;/N. These summations are to
the population N, but they can be made to
the sample » in sample estimates, which
concern us most. The sample difference
(7. — y.) estimates the population differ-
ence (¥, — ¥,), with the expectations:
Exp(j,) = Z(PY,/w)IN = LY;/N = ¥,
the population mean; but Exp(jy,) =
SPY,/N = Y, = Y + Bias, with the entire
population exposed to unequal selection.

Thus ¥, — ¥, = Bias, because ¥, = ¥
is unbiased, but Y, is biased; but I used (5.2)
for convenience, because in the sample we
have 7, most conveniently. Similarly relative
values based on ¥, are preferable on theor-
etical grounds, for B, S, and C,, as in (5.5).
But I used ¥, for everyday convenience and
because it has lower variances.

—B = (Yw_ K)/Yu = RkkaCy

and

B> = R,C:CL. (5.3)

In order to contrast the increase in vari-
ance (1 + C?), with the effects of biases, let
us consider a mean with the effective sample
size n, = n/Deff, where Deff is the ““design
effect,” often appreciably greater than 1;
these effects, Deff = Var(7)/(S?/n) > 1,
have been computed and used in many
studies (Kish 1976). Then the relative mean
square errors (RMSE) for y, and j,,
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respectively, are:
S’1 + CH = CX(/n; + Cilng) (5.4)
and

B+ S8 = C:(ln; + RL,C).  (5.5)

These relations were expressed in relative
terms, with the biases and variances divided
by Y2. I preferred these in order to make
comparisons easier for many variables within
the same survey and also between surveys.
However, some may prefer to avoid that,
especially for situations where division by
Y2 is inappropriate, as when Y, is near zero
or is a proportion when P or (1 — P) may
be confused. But the same relation may be
found in

Var(j,) =
Bias’ + Var(j,) =

S}(ng; + Cifng)  (5.6)
S2(Un, + R, CD).
.7)

Thus the relative increase C? [n, for the vari-
ance of y, decreases along with the variance
itself. But the effects of the biases in y, do
not decrease, hence come to dominate for
large samples; and these functions of R;,
tend to vary greatly between variables.
From the relations above we construct
some useful guidelines for practical work.
1. Values of (1 + C?) should be esti-
mated in the design (4.1) or from the sample
(4.3). When C} is moderate its effects on
both biases and variances will be small,
except for very large n, and large R;,. For
example, when C? < 1, C}/100 < 0.01 and
R;, <001 if R,, < 0.1. Furthermore
(1 + L) can be often guessed well enough
from Table 2 and values of the range
K = k. /kun of the relative k;. For example,
for K = 1.3, Lis between 0.01 and 0.02; and
this may be true for many nonresponse
weights; for K = 1.5, L is between 0.015
and 0.04. For K = 2, L is between 0.04 and
0.125 and may be worth computing; and
this is true for K > 3. For example, the
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value of L = 0.33 I computed for the Cur-
rent Population Surveys would explain why
only mild differences ( y, — j,) were found
by Bloom and Idson (1991).

2. Note that C? depends on both the
range of the k; and the frequency distri-
bution represented by W, or n, = W,/k,.
Hence C}? will be large only when k,,, is
large for large portions, W, or n,. Large
values of L in Table 2 occur for large K, and
for dichotomies, especially for W, (or
U) = 0.5.

3. C}is stable for the sample, but C}/n, is
much increased for small n,; in subclasses.
On the contrary, the values of R;, can vary
by orders of magnitude between variables of
the same survey. Therefore the effect of
biases can be large for some variables,
especially for the entire sample with large n,;
but it may be small for subclasses with small
n,, or small R;,. Weighted estimates should
be preferred when R;, > 1/n,. Perceptible
biases are seldom found, because the
squared correlations have small effects.

4. We have disregarded here

a. the extra costs (troubles) of weighting;

b. the advantages of self-weighting
samples;
c. the advantages of compromises

between weighted and unweighted esti-
mates, noted below in 7;

d. implications also for more complex
statistics, such as regression coef-
ficients.

6. Epsem Selections for Self-Weighting
Samples

Self-weighting samples are often preferred,
because they possess considerable advan-
tages in reduced variances, in simplicity, and
in robustness. Statistical theory also, from
the lowest to the highest, overwhelmingly
assumes self-weighting samples in one form
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or another. Furthermore, selections of ele-
ments with equal probabilities, epsem for
short, often seems desirable and reasonable
when the survey variables are more or less
evenly distributed over the population.
Voting by all adults springs readily to mind,
but there are other behaviors, attitudes, and
opinions which are also democratically,
evenly distributed, or at least roughly so.
Self-weighting samples for analysis is a
goal for many surveys and epsem selection
is the principal means toward that end.
Because we often confuse the two, let me
clarify how they exist in common practice.
Disproportionate “optimal allocations”
(source 1 in Section 2) clearly are not epsem,
and hardly anybody would use them for
self-weighted (i.e., unweighted) analysis.
Samples with oversampled (or undersam-
pled) domains (source 2) are not epsem and
they also are not self-weighting. When
frame problems (source 3) result in unequal
P, of selection the question of weighting
becomes quantitative (Sections 4, 5, and 7).
For example, fertility studies may find that
1 to 5% of an epsem of households have two
women of childbearing age; both can be
selected to maintain the epsem f. If one
is selected at random her probability is
reduced to f/2, but in most cases the analysis
may disregard the small factor (1 + B*/S?)
and proceed with self-weighting. On the
contrary the example in Section 2 of single
dwellings selected from buildings with N,
dwellings (N, = 1,2...62) presented
gross violations with P, = f]N;; the variance
factor was (1 + L) = 2.6, but the bias fac-
tors (1 + B?/S?) were highly variable and
much worse. It is best to avoid them, an
important part of the sampler’s art.
Nonresponses are impossible to avoid,
but much can be done to reduce them and
their effects (too much to detail here).
Because of their omnipresence they should
not cancel the label epsem, but if weights are
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used for compensation the analysis is not
self-weighting. Thus epsem is not sufficient
for self-weighting, and we saw above that
epsem is not necessary in cases of trivial
frame problems. The two are closely related
but keeping the two concepts distinct clari-
fies both.

Similarly we must avoid the common con-
fusion of epsem with simple random sam-
pling (srs). Probably most survey samples
are epsem, but very few are srs (outside
academic writing). That popularity of
epsem and self-weighting samples is due to
their “robustness,” I claim (Kish 1977).
Three reasons were given in Section 4:
avoiding complexity, the variance factor
(1 + L), and the bias factors (1 + B*/S?).
The fourth reason comes from the multipur-
pose nature of most surveys, and that self-
weighting “satisfices” most purposes and
comes close to optimizing (“satisficing”)
many or even most purposes (Kish 1976,
1988).

Unequal probabilities can be justified by

- “optimal” allocation if the purposes (all, or

preponderant) of the survey justify it. In
other situations, however, the sampler
should search for ways to avoid the dilemma
between the biases of unweighted and the
increased variances of weighted samples.
Achieving epsem samples during the selec-
tion operation is a fundamental skill in the
art of survey sampling. This includes com-
plex multistage selections with probabilities
proportional (first directly, then inversely)
to measures of sizes. Often it also requires
clever handling of imperfections in the sam-
pling frame. After selection, achieving
acceptable response rates often needs skill-
ful and devoted care.

7. Diverse Effects for Different Statistics

Users must be warned about these wide dif-
ferences between effects, because mgny may
be misled by the mere phrasing of “THE



196

Bias.” The biases can be estimated from the
sample by ( y, — j,), and should be. They
vary greatly between the variables and
depend strongly on the correlations between
the survey variables y; and the weights w;;
the bias may be negligible for most variables
but large for others. The standard errors can
differ also, increasing for small subclasses
with small \/n. However, they tend to differ
less than the biases, and especially for pro-
portions when o = ,/P(1 — P) remains
rather constant for all but extreme values of
P.

1. Expansion totals ¥ = y|f are most sensi-
tive to biases from weights; for example,
even uniform and random nonresponses
can result in bad underestimates, if not
adjusted. Also expansions like ¥ =
ZN,(yn/n,) can be very sensitive to biases
in the borrowed values of the N,. But
differences or ratios of such totals from
periodic studies would be less sensitive,
therefore biases may be more tolerated in
such comparisons.

2. Means are usually less affected than
totals. Sample surveys survive the terrible
nonresponse rates now prevailing in the
USA (and elsewhere) only because non-
respondents do not differ drastically from
respondents for most survey variables.
Large biases result only from combi-
nations of differences in both weights and
survey variables within subclasses. If
either of these is uniform over subclasses
the net bias tends to be small (Kish 1965,
13.4B).

3. For subclass means the variances increase
in proportion to the decrease of the sam-
ple bases, roughly in a ratio that may be
denoted by S, = ,/(Deff,c?/n,). The n,,
o,, and Deff, all refer to the subclasses c;
the “design effects” Deff, in cluster sam-
ples tend to decrease slightly from
Deff > 1 toward 1 with decreasing sub-
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class size, especially for “crossclasses,”
but much more slowly than n.. Cross-
classes refer to the majority of subclasses
which cut across the clusters of sample
designs; thus the Deff = [1 + roh(h —1)]
of clustering tends to be reduced toward
1 as the average size of clusters reduces
from b to b, along with n to n, (Kish 1987,
2.3; Verma, Scott and O’Muircheartaigh
1980). Since the biases B, tend to be the
same, either generally or on the average,
the bias ratio B, /S, tends to decrease as S,
increases with decreasing sizes of sub-
classes.

. For subclass differences (y. — 7,) the

above process is greatly enhanced,
because the standard errors S =
V(82 + S}) are greater than for one sub-
class, and even more because biases often
tend to be in the same direction, and thus
tend to cancel in the differences. Then the
bias ratio B[S with a drastically reduced
numerator, and increased denominator,
becomes greatly reduced (Kish 1987, 2.4-
2.6). Hence the mean-square-errors
S?(1 + B?/S*) become dominated by the
variances S°. “Model dependent” infer-
ence may go further and claim that
weights can be disregarded in estimating
subclass differences. However, 1 reject
that null limit for B on philosophical
grounds (Kish 1987, 2.4, 1.8).

. Analytical statistics can be of many kinds,

and a general statement about B/S seems
difficult. I share the “population bound”
view of inference that weighting matters
and data have shown this for such ana-
lytical statistics as regression coefficients
(Holt, Smith, and Winter 1980). When
considerable differences are found
between weighted and unweighted stat-
istics (e.g., regression coefficients), I trust
the former. It is also true that compu-
tational, methodological, and mathemat-
ical problems may pose formidable prob-
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lems for weighted estimates. Sampling
errors, inferential statistics, and tests of
significance can also pose severe prob-
lems of computation, methodology, and
interpretation for weighted estimates.

8. To Weight or Not to Weight?
Compromises and Strategies

The literature on this topic, including my
references, concern themselves with the bias
of some statistic, often a regression equation,
as if this were the single purpose of the
survey. But most surveys, all in my experi-
ence, have many purposes; they are multi-
purpose and in several dimensions: several
variables, several statistics, subclasses, etc.,
(Kish 1988). All these exhibit different rela-
tive effects (1 + B?/S?) of biases. Is it poss-
ible or desirable to treat each statistic
separately, perhaps using weighted esti-
mates for means, but unweighted estimates
for regressions, as implied by some?

Another paradox arises when we contrast
academic literature with practice. In the for-
mer there are sharp contrasts made between
the “population-bound” and the “model
dependent” approaches (Brewer and Mellor
1973; Hansen, Madow, and Tepping 1978;
Kish 1987, 1.4, 1.8). Perhaps the contrasts
are sharpened by exaggerations of the
opponent’s misstatements. Most important,
actual practice often leaned toward com-
promise, but this needs the guidance of
theory.

‘Some theory has been coming in the past
few years as my references show, and we
may confidently await growing interest; the
trend is toward compromises and the
criterion of mean-square-errors predomi-
nates. Though the terms of (1 + L) and
(1 + B?/S?) for relative increases in vari-
ances and biases may be mine, most of the
concepts are not contradictory to them. I
find it interesting and worthwhile to dis-
tinguish four “levels” of compromises.
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1. At the very least comes the recognition
that choices should be made for specific
situations rather than a blanket popu-
lation-bound stand of always weighting
for unequal P, versus a blanket model-
based position of never weighting,
especially for relationships and regressions
(Bloom and Idson 1991; DuMouchel and
Duncan 1981; Graubard and Korn 1991;
Iannacchione, Milne, and Folsom 1991;
Kish 1965, p. 400). I propose, however,
that the MSE criterion of (1 + B?/S?)is
preferable to tests of significance for
|B/S| > 1.96 at the 5% level.

2. At the next level we find some practice of

trimming small percentages of extreme
weights to accept small biases against
large reductions in the (1 + C}) =
(1 + L). It may be especially useful to
trim the extreme “‘right tail” where a few
cases of large k; from small p; (some of
these outliers may be mistakes, others
haphazard events) may greatly increase
(1 + C?) (Flyer, Rust, and Morganstein
1989; Hidiroglou and Srinath 1981; Kott
1991a; Lee 1991; Potter 1988). I wonder if
some smoother transformation than
trimming of the k; may do even better.

3. The shrinkage of weights seems to be a

natural development that holds promise
(Spencer and Cohen 1991). Instead of the
ad hoc nature of trimming decisions, it
points to a generalized, uniform treat-
ment with theoretical bases. However
shrinkage weights are specific for each
variable and they can vary widely on
multipurpose surveys. Trimming is uni-
form, and it affects only a small portion
of the sample. )

Briefly, a shrinkage mean 6y, +
(1 — 0)p,, with 0 < 0 < 1, in practice
implies transforming the weights to g; =
0k + (1 — 0)k;, = k; — 0(k; — k). On
the other hand, with trimming we get
g =k; for k; < K, but g = K for
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k; > K, where K is some strategically
chosen constant; for two sided trimming
|k;] > K may be used. However, some
other compromise transformation bet-
ween these two transformations may be
even better. For example, a square root
transformation g; = \/k;, or g; = k{ with
0 < ¢ < 1. Empirical investigations
would be welcome in situations where C}
is large enough to distinguish between the
diverse gains.

4. Nevertheless the multipurpose nature
of most surveys raises problems not
addressed by my references. When are
specific answers for each statistic of a
survey feasible and desirable? Or is a
general overall answer for all statistics on
a survey more acceptable, and how does
one arrive at such a compromise? Having
had to answer these questions in practice
convinces me that they need more theory.
The good news is that there is need for
much research, both theoretical and
empirical, and especially combined. I also
hope for compromise average weights,
adapted from those for allocations (Kish
1976, 1988).

I end with a few pieces of advice.

a. Always compute estimates of the factor
1 + C? (Section 5).

b. Ifthis (1 + L)is large, see how much you
can reduce it with trimming.

c. Compute many (30 or 60?) estimates of
(., — 7,) for different variables and dif-
ferent statistics.

d. Make comparisons with the factors
(1 + B?/S?) and justify your decision.
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