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Weighting Methods

Graham Kalton and Ismael Flores-Cervantes'

Weighting adjustments are commonly applied in surveys to compensate for nonresponse and
noncoverage, and to make weighted sample estimates conform to external values. Recent
years have seen theoretical developments and increased use of methods that take account
of substantial amounts of auxiliary information in making these adjustments. The article
uses a simple example to describe such methods as cell weighting, raking, generalised
regression estimation, logistic regression weighting, mixtures of methods, and methods for
restricting the range of the resultant adjustments. It also discusses how auxiliary variables
may be chosen for use in the adjustments and describes some applications.
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1. Introduction

Weights are commonly assigned to respondent records in a survey data file in order to
make the weighted records represent the population of inference as closely as possible.
The weights are usually developed in a series of stages to compensate for unequal selec-
tion probabilities, nonresponse, noncoverage, and sampling fluctuations from known
population values (Brick and Kalton 1996).

The first stage of weighting for unequal selection probabilities is generally straight-
forward. Each sampled element (whether respondent or nonrespondent) is assigned a
base weight that is either the inverse of the element’s selection probability or proportional
to that inverse. With probability sampling, the selection probabilities are known, and the
base weights are generally readily determined. A difficulty that sometimes occurs with the
base weights arises from sampling frame problems that result in some sampled elements
being selected with markedly different probabilities than desired. For example, an element
may be classified into the wrong stratum, and hence have a much lower selection prob-
ability than intended. If sampled, the element will be assigned a large base weight, which
will result in a loss of precision for the survey estimates. To reduce this loss of precision,
the base weights for such elements may be trimmed in the same manner as discussed in
Section 3 for trimming nonresponse adjusted weights. Base weights will not be addressed
further in this article.
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The second stage of weight development is usually to attempt to compensate for unit, or
total, nonresponse. The base weights of responding elements are adjusted to compensate
for the nonresponding elements. The general strategy is to identify respondents who are
similar to the nonrespondents in terms of auxiliary information that is available for both
respondents and nonrespondents, and then to increase the base weights of respondents
so that they represent similar nonrespondents. In many cases little is known about the
nonrespondents (often only their stratum and cluster), in which case a simple cell weight-
ing adjustment may be used. Respondents and nonrespondents are sorted into weighting
cells formed from the auxiliary information available, and the weights of the respondents
in each cell are increased by a multiplying factor so that the respondents represent the
nonrespondents in that cell (see Section 2). This method works well when there is limited
auxiliary information available for the nonrespondents. However, when a sizeable amount
of auxiliary information is available, and the researcher wants to incorporate much of it in
the nonresponse weighting adjustments, then one of the alternative methods described in
Section 2 may be needed.

For most surveys with only one round of data collection, nonresponse adjustments are
made in a single operation. However, in panel and multiphase surveys, where nonresponse
may occur at each successive round of data collection, a sequence of nonresponse adjust-
ments may be employed. In this case, a good deal of auxiliary information is available
about later round nonrespondents from their responses at earlier rounds. Complex forms
of weighting adjustments may then be needed to take account of a sizeable amount of
this information in carrying out the later adjustments. See Section 5 for an example
relating to a panel survey, the U.S. Survey of Income and Program Participation (SIPP).

The third stage of weight development involves a further adjustment to the weights to
make the resultant weighted estimates from the sample conform to known population
values for some key variables. A common form of this type of adjustment forces the
sample joint distribution of certain variables (e.g., the sex by age-group distribution) to
match the known population joint distribution. This type of adjustment is often termed
poststratification. This stage of adjustment serves two purposes: to compensate for
noncoverage and to improve the precision of the survey estimates. It can also be used
to compensate for nonresponse. It should be noted that the theory for poststratification
presented in survey sampling texts assumes full response and perfect coverage. In this
situation, the adjustments are generally relatively small provided that the sample sizes
in the poststrata are reasonably large, and on average poststratification can be expected
to lead to gains in precision for the survey estimates (e.g., Holt and Smith 1979; Kish
1965). However, when there is sizeable noncoverage and/or nonresponse involved, the
adjustments can be substantial; in this case the adjustments are used to reduce the bias
of the survey estimates, but standard errors for estimates unrelated to the adjustment
variables may be increased.

Nonresponse cell weighting adjustments and poststratification adjustments have been
widely used for many years. A more recent development has been the increasing use of
more complex adjustment methods that can incorporate more auxiliary information than
is possible with adjustment cell methods. These newer methods may be used both to
compensate for nonresponse, particularly in later rounds of surveys that involve several
rounds of data collection, and to force sample distributions to conform to known
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population distributions, as with poststratification. The methods include raking, general-
ised regression estimation (GREG), logistic regression modelling, and combinations of
weighting cell methods with these methods.

The main purpose of weighting adjustments is to reduce the bias in the survey estimates
that nonresponse and noncoverage can cause. A concern with making the adjustments,
however, is that they result in increased variability in the weights and thereby lower the
precision of the survey estimates. In the case of nonresponse adjustments, a useful measure
of this loss of precisionis F = 1 + C V(w[)z, where CV(w;) is the coefficient of variation of
the weights w; (see, for example, Kish 1992). The measure F represents the multiplying
factor that is applied to the variance of a survey estimate due to the variability in the
weights in the situation where equal weights are optimal. In this article F relates to the
weighting adjustments after the base weights have been applied. Henceforth it will be
termed the variance inflation factor. Since the magnitude of this factor is particularly
affected by large weighting adjustments, methods have been developed to constrain the
adjustments within specified bounds or to trim extreme weights, as discussed later.
Such methods serve to improve the precision of the estimates, while accepting some pos-
sible loss in bias reduction. It should be noted that the variance inflation factor does not
apply for weighting adjustments that benchmark survey estimates to population values;
as noted above, absent nonresponse and noncoverage, these adjustments can be expected
to increase the precision of survey estimates involving variables related to the auxiliary
variables used in the adjustments. However, in this case also, large variability in weighting
adjustments due to variable noncoverage can lower the precision of survey estimates unre-
lated to the auxiliary variables.

This article reviews a number of weighting methods that are currently being applied.
Section 2 describes the methods, illustrating their application with a simple artificial
example. Section 3 describes methods for constraining the variability of the weights. Sec-
tion 4 discusses how auxiliary variables may be chosen for use in weighting adjustments
when many such variables are available. Section 5 describes some applications in actual
surveys. The article ends with some concluding remarks.

2. A Review of Weighting Methods

This section outlines a selection of methods that are used for making weighting adjust-
ments for nonresponse and for making certain weighted sample distributions or estimates
conform to distributions or estimates obtained from other sources. The same methods can
be applied for each of these two purposes. Nonresponse weighting adjustments are
employed to adjust the base weights so that the weighted respondent distributions for
certain variables conform to the total sample distributions for these variables. Subsequent
adjustments are employed to make the resultant weighted respondent sample distributions
or estimates conform to distributions or estimates from an external source, such as popula-
tion distributions or totals obtained from the sampling frame, from another source (such as
population estimates by age and sex), or from a large high-quality survey (such as a labour
force survey). Kalton and Kasprzyk (1986) term the first type of adjustments ‘‘sample
weighting adjustments’” and the second type ‘‘population weighting adjustments.”” In
both cases, the adjustments are used to bring the weighted respondent sample data in



84 Journal of Official Statistics

line with other data. For simplicity, the presentation here will be made in terms of making
weighted sample data conform to population data, but it should be borne in mind that this
can be readily converted to nonresponse adjustments by interpreting ‘‘population data’’ as
‘‘data for the total sample.”’

The approach adopted in this section is to briefly describe each adjustment method and
the assumptions of its underlying statistical model and to illustrate its application with a
simple example. The same example is used throughout so that results can be compared
across methods. For ease of presentation, the example employs two auxiliary variables,
A and B, in making the weighting adjustments. Since complex weighting adjustments
are applicable mostly in situations where several auxiliary variables are to be used in
making the adjustments, the example is artificial. Nevertheless, it serves as a useful illus-
tration. For most methods A and B will be treated as categorical variables, with A having
four categories (A1, A2, A3, and A4) and B having three categories (B1, B2, and B3). The
initially weighted sample joint distribution and the population joint distribution of A and B
are given in Table 1 below.

It may be seen from Table 1 that the overall sample and population totals are 1,000 and
1,500. The sample total is constructed to be smaller than the population total because of
nonresponse (in the case of nonresponse weighting adjustments) or noncoverage (in the
case of adjustments to external controls). A comparison of the numbers in corresponding
cells of the sample and population tables shows some substantial differences in the relative
magnitudes (for example the ratio of the population total to the sample total in Cell A1/B1
is 4 whereas the ratio in Cell A1/B2 is 1). These differences may be accounted for by
differential nonresponse or noncoverage rates.

Six methods will now be described. The weighting adjustments obtained by applying
each of the six methods to the data in Table 1 are presented in Table 2, Parts A to F.
They are discussed below. Parts G and H of Table 2 give the weighting adjustments for
two methods that constrain the range of the adjustments. These and other methods for
constraining the variability of the weighting adjustments are discussed in Section 3.

2.1. Cell weighting

The standard cell weighting procedure is to adjust the sample weights so that the sample
totals conform to the population totals on a cell-by-cell basis. Thus the weighting adjust-
ment for Cell A1/B1 is 80/20 =4.00 and that for Cell A1/B2 is 40/40=1.00. The cell
weighting adjustments for sample elements in each of the cells are given in Part A of
Table 2.

Table 1. The initially weighted sample and population joint distributions for the auxiliary variables A and B

Sample Population

Bl B2 B3 Total Bl B2 B3 Total
Al 20 40 40 100 Al 80 40 55 175
A2 50 140 310 500 A2 60 150 340 550
A3 100 50 50 200 A3 170 60 200 430
Ad 30 100 70 200 A4 55 165 125 345

Total 200 330 470 1,000 Total 365 415 720 1,500
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Table 2. Weighting adjustments obtained from various weighting methods for the data in Table 1

A: Cell weighting B: Raking
B1 B2 B3 B1 B2 B3
Al 4.00 1.00 1.38 Al 1.81 1.45 2.02
A2 1.20 1.07 1.10 A2 1.08 0.87 1.21
A3 1.70 1.20 4.00 A3 2.20 1.76 2.45
A4 1.83 1.65 1.79 A4 1.83 1.47 2.04
F=124 F=1.10
C: Linear weighting D: GREG weighting
B1 B2 B3 B1 B2 B3
Al 1.82 1.50 1.97 Al 1.21 1.17 1.14
A2 1.09 0.78 1.24 A2 1.43 1.40 1.36
A3 2.19 1.88 2.34 A3 1.66 1.62 1.59
A4 1.83 1.52 1.98 A4 1.88 1.85 1.81
F=1.10 F=1.02
E: Logistic regression weighting F: Mixture
B1 B2 B3 B1 B2 B3
Al 1.87 1.35 1.99 Al 1.71 1.33 2.19
A2 1.11 1.04 1.13 A2 1.32 1.03 1.10
A3 2.23 1.49 2.40 A3 2.12 1.65 2.71
A4 2.05 1.42 2.20 A4 1.75 1.36 2.24
F=1.10 F=112
G: Logit weighting H: Truncated linear weighting
B1 B2 B3 B1 B2 B3
Al 1.87 1.46 1.98 Al 1.81 1.48 1.99
A2 1.08 0.74 1.27 A2 1.08 0.76 1.26
A3 2.17 2.09 2.18 A3 2.20 2.00 2.20
A4 1.89 1.49 1.99 A4 1.83 1.50 2.00
F=1.10 F=1.10

The assumption underlying cell weighting adjustments for nonresponse is that the
respondents within a cell represent the nonrespondents within that cell. Using a response
probability model, this assumption is satisfied if every population element in a cell has the
same probability of responding if sampled (Kalton and Maligalig 1991). This corresponds
to the missing at random (MAR) assumption of Little and Rubin (2002). A similar model
applies if the adjustment is being made for noncoverage. Unlike other methods, cell
weighting makes no assumptions about the structure of the response (or coverage)
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probabilities across cells. Cell weighting has been used for many years to compensate for
nonresponse and there is a substantial literature on the method (see, for example, Oh and
Scheuren 1983; Kalton 1983; Little 1986; Elliot 1991; Brick and Kalton 1996).
Applications in some U.S. surveys are described by Chapman, Bailey, and Kasprzyk
(1986).

A potential disadvantage of cell weighting is that it can lead to a large variability in the
distribution of the weighting adjustments, thereby inflating the variances of the survey
estimates. The cell weights in Table 2 have a four-fold variation from 1.00 in Cell
A1/B2 to 4.00 in Cells A1/B1 and A3/B3, leading to a variance inflation factor of
F = 1.24, i.e., to a reduction in the effective sample size of almost 20 percent. Variance
inflation is a particular concern when sample sizes in a number of the adjustment cells are
small (as can occur when there are many cells), since small sample sizes give rise to an
instability in the adjustments. It is this feature that leads to the use either of weight
trimming methods or of alternative adjustment methods.

2.2. Raking

Whereas cell weighting forces the sample joint distribution of the auxiliary variables to
conform to the population joint distribution, raking operates only on the marginal distri-
butions of the auxiliary variables. Raking is an iterative proportional fitting procedure:
first, the sample row totals are forced to conform to the population row totals; then the
sample adjusted column totals are forced to conform to population column totals; then
the row totals are readjusted to conform; and so on until convergence is reached. Reason-
able convergence is usually reached fairly rapidly. However, in some cases convergence
can be slow and it is not guaranteed (Ireland and Kullback 1968).

The first round of the raking iteration for the data in Table 1 is given in Table 3. Step 1
makes the sample row totals conform to the population row totals in Table 1. Thus, all the
cell entries in Row A1 are multiplied by 175/100, those in Row A2 by 550/500, etc. Step 2
now adjusts the cell entries from Step 1 to make the column totals conform to the popula-
tion column totals in Table 1. The cell entries in Column B1 are multiplied by 365/356.75,
those in Column B2 by 415/504, and those in Column B3 by 720/639.25. As a result of
Step 2, the row totals no longer conform to the population row totals. The iteration process
is therefore repeated until both row and column totals conform to the population totals
within an acceptable margin of error. The final weights obtained from this raking
procedure are displayed in Part B of Table 2.

Table 3. The first raking iteration for the data in Table 1
Step 1 Step 2

Bl B2 B3 Total Bl B2 B3 Total

Al 35.00 70.00 70.00 175.00 Al 3581 57.64 78.84 172.29
A2 55.00 154.00 341.00 550.00 A2 56.27 126.81 384.08 567.16
A3 215.00 107.50 107.50  430.00 A3 21997 88.52 121.08 429.57
A4 51.75 17250 120.75  345.00 A4 52.95 142.04 136.00 330.99
Total 356.75 504.00 639.25 1,500.00 Total 365.00 415.00 720.00 1,500.00
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When raking is used for nonresponse adjustments, the response probability model being
assumed is that the response probabilities are equal for all population elements within
cells, as with cell weighting, and also that the response probability for cell (4, k) is of
the form ¢, = oy, By, where «y, and (3, denote row and column effects (Kalton and
Maligalig 1991). This additional assumption in the raking model leads to less variability
in the weights and hence in the example F is reduced from 1.24 with cell weighting to 1.10
with raking. Note, however, that the additional assumption leads to substantial differences
in the weights for many cells from the cell weighting method (see, for example,
Cells A1/B1 and A1/B3). The appropriateness of the raking model needs to be carefully
considered in such a case.

Raking has been widely used for many years for benchmarking sample distributions to
external distributions (see, for example, Deming and Stephan 1940). When benchmarking
to population distributions from external sources, sometimes only the marginal distribu-
tions of the auxiliary variables are available, in which case raking is possible but cell
weighting is not. When the joint distribution is available, the choice between raking
and cell weighting involves balancing the smaller loss in precision with raking from
reduced variability of the weights against the bias resulting from a failure of the assumed
structure of the response probabilities across cells. When the number of cells is relatively
small and the cell sample sizes are reasonably large, cell weighting may generally be pre-
ferable. However, when there are many cells (as arises from the use of a sizeable number
of auxiliary variables) raking may be the better choice.

The raking method described above is also known as the raking ratio method.
Sharot (1986) calls it rim weighting. For further discussion of raking, see Oh and Scheuren
(1983) and Brackstone and Rao (1979) and, for an application, see Berry, Flatt, and Pierce
(1996). It is one form of the generalised raking methods of Deville, Sirndal, and
Sautory (1993) (see also Deville and Sidrndal 1992). This class of methods is designed
to minimise the weighting adjustments needed to make sample marginal distributions
conform to population marginal distributions according to some defined distance function;
some of the methods also set upper and lower limits to the adjustments.

2.3.  Linear weighting

Linear weighting is another form of generalised raking that is similar to raking except that
a different distance function is used (Deville, Sdrndal, and Sautory 1993). Like raking, it
adjusts the weights to make the sample marginal distributions agree with the population
marginal distributions. Linear weighting to marginal distributions is a special case of
generalised regression estimation (see below). It is treated separately here to bring out
its similarity to raking.

The weighting adjustments derived for the example using linear weights are given in
Part C of Table 2. The variance inflation factor F'is 1.10, the same as for the raking weight-
ing adjustments. The cell weighting adjustments in Part C of Table 2 differ somewhat from
those in Part B for raking, but the differences are not large and are much less than those
between either of these sets of adjustments and the adjustments with cell weighting.

Linear weighting has the undesirable feature that it can produce negative weights in
some situations. As discussed in the next section, the method may be modified to place
constraints on the adjustments that avoid this outcome.
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2.4. GREG weighting

To this point, the weighting adjustments have been developed for equating joint or mar-
ginal distributions with the population distributions. An alternative form of benchmarking
is to make weighted sample estimates for quantitative variables conform to population
parameters. For example, the estimate of total output from a sample of businesses may
be equated to the population total output. To illustrate this approach, assign values 1, 2,
3, and 4 to the classifications Al, A2, A3, and A4, and similarly 1, 2, 3, to B1, B2, B3.
The population total for A is then 3,945 and the unadjusted sample total is 2,500; for B
the corresponding totals are 3,350 and 2,270. The GREG weighting adjusts the weights
so that the weighted sample totals become 3,945 for A and 3,350 for B. The weights
needed to achieve these specifications are given in Part D of Table 2.

Since the unadjusted sample mean for A is 2.50 whereas the population mean is 2.63, it
is to be expected that the weighting adjustments will be below the average adjustment of
1.50 for low A scores and above that average for high A scores, and this turns out to be the
case. The unadjusted sample mean for B is 2.27 and the population mean is 2.24, so that
here one might expect the high B values to have slightly lower adjustments, and this also
turns out to be the case.

The GREG weighting adjustment derives from the standard regression estimator in
survey sampling (see, for example, Cochran 1977, Chapter 7). The method involves
incorporating the adjustment for the auxiliary variables used in the regression estimator
as a modification of the weights (Bethlehem and Keller 1987; Bethlehem 1988; Deville
and Sidrndal 1992; Fuller, McLoughlin, and Baker 1994; Fuller 2002). As a simple
illustration, for an equal probability sample without nonresponse or noncoverage, the
regression estimator of the population total Y is

where ¥ = 3" dy;, X = 3" dx;, X is the known population total for the auxiliary variable
x, b is the sample regression coefficient for the regression of y on x, and d is the inverse of
the sampling fraction (the base weight). This estimate may be alternatively expressed as
Yr = > w;y;, where the adjusted weight w; is given by

w;=d+ {(x — X)(x; —x)/z (x; —x)z]

The GREG weighting approach readily extends to cover several auxiliary variables in
the regression model and to incorporate unequal weights. As with standard regression
modelling, transformations of variables can be used and interaction terms can be included.
Note that, although the GREG weights come from a regression model with a dependent
variable y, the weights do not depend on y. They are general weights that are applied
for all analyses of the survey data. The use of GREG weighting in Statistics Canada’s
Generalized Estimation System is described by Estevao, Hidiroglou, and Sérndal (1995).

The linear weighting described above is a special case of GREG weighting when the
auxiliary variables are categorical variables, or treated as such. Note that by making the
sample weighted marginal distributions conform to the population marginal distributions,
linear weighting also makes the weighted sample totals conform to the population totals if
A and B are discrete variables, as considered in Part D of Table 2. Equating weighted
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sample totals to population totals imposes far fewer constraints on the weighting adjust-
ments than the linear weighting in Part C. As a result the cell-by-cell variation in the
weighting adjustments in Part C is much reduced, and the variance inflation factor is
only F = 1.02.

2.5. Logistic regression weighting

Logistic regression modelling has been used to develop weighting adjustments for
nonresponse. A logistic regression model is constructed to predict the probability of
responding if sampled based on the auxiliary information, and each respondent’s weight-
ing adjustment is then equated to the inverse of the respondent’s predicted response prob-
ability (see, for example, lannacchione, Milne, and Folsom 1991; Lepkowski, Kalton, and
Kasprzyk 1989). When the auxiliary information is a set of categorical variables and no
interactions are included in the logistic regression model, logistic regression weighting
is similar to raking. However, unlike raking, it cannot give weighting adjustments of
less than 1. Logistic regression weighting is more flexible than raking in that it can include
continuous predictors without categorising them. It can also readily include interaction
terms as needed to best predict the response probabilities. Interaction terms can be
included with raking by, for example, using the cells of cross-classification of two
variables as a single marginal control, but the process is less automatic.

Part E of Table 2 gives the weighting adjustments for the data in Table 1 obtained using
logistic regression weighting with A and B treated as categorical variables and with no
interaction terms in the model. Not surprisingly, these weighting adjustments are seen
to be fairly similar to those obtained by raking as presented in Part B of the table.
However, the simple use of logistic regression modelling as conducted here does not
ensure that the weighted sample marginal distributions conform to the population marginal
distributions; Iannacchione, Milne, and Folsom (1991) address that problem.

A variant of this approach is to place the full sample on a continuum in order of their
predicted response probabilities from the logistic regression model and to divide the con-
tinuum up into a number of cells. The cell weighting method described earlier is then
applied with these cells (see, for example, Little and Rubin 2002). In essence, this version
involves constructing a single composite variable as a linear combination of the auxiliary
variables in the model, and then forming cells based on this composite variable.

2.6. Mixture of cell weighting and another method

Cell weighting has the attraction over other methods that it avoids assumptions apart from
the missing at random (MAR) assumption that is common to all the methods under review.
However, it can produce unstable weighting adjustments, particularly when the sample
sizes in some cells are small. A compromise approach is to use cell weighting for cells
with large sample sizes and some other weighting method for other cells. Oh and Scheuren
(1987), for instance, have used a combination of cell weighting and raking in this fashion,
and termed the method modified raking.

To illustrate this general approach, consider using a cell weighting adjustment for the
large Cell A2/B3, and raking for the other cells, after removing Cell A2/B3. The results
of this procedure are displayed in Part F of Table 2. The weighting adjustment for Cell



90 Journal of Official Statistics

A2/B3issetat 1.10 as in Part A of the table for cell weighting, thus lower than the 1.21 for
overall raking in Part B. Other weighting adjustments in the A2 row and B3 column are
therefore higher than the raking adjustments in compensation, and this feature, in turn,
leads to lower weighting adjustments in the remaining cells.

3. Methods for Constraining Weight Adjustments

The variance inflation factor F is increased greatly by extreme weighting adjustments. To
avoid this increase, several alternative procedures have been used to eliminate very large
weighting adjustments.

With cell weighting, common procedures are to trim the large weighting adjustments to
some specified level or to collapse cells. For example, if a maximum allowable weighting
adjustment is specified, cells with adjustments larger than the maximum are assigned the
maximum adjustment, with the adjustments of other cells modified to ensure the weighted
total is unaltered. Alternatively, these cells are collapsed with other cells such that the
weighting adjustments of the collapsed cells are not larger than the specified maximum.
Potter (1988, 1990, 1993) reviews procedures for trimming weights and Kalton and
Maligalig (1991), Little (1993), Lazzeroni and Little (1998), and Tremblay (1986) discuss
procedures for collapsing cells.

With the adjusted weights described in Section 2, the weighted sample total — obtained
by summing over the cells the product of the cell weight by the sample number in the
cell — equals the population total. For example, using the cell weights in Part A of
Table 2 and the sample numbers in Table 1, the weighted sample total is
(4.00%20) + (1.00x40)+. . .4+ (1.79%70) = 1,500. However, if the weights for Cells
A1/B1 and A3/B3 are trimmed back from 4.00 to, say, 2.50, the contribution to the
weighted sample total from these two cells falls from 280 to 175. As a result, the weighted
sample total is reduced to 1,395. To bring the weighted population total back up to 1,500,
the weighted sample total in other cells may be increased from (1,500 — 280) = 1,220 to
(1,500 — 175) = 1,325. This increase may be achieved by increasing the weights in each of
these other cells by 1,325/1,220 = 1.09. Thus, the trimming procedure leads to a redistri-
bution of the weights, with a part of the population in Cells A1/B1 and A3/B3 being
represented by sample elements in other cells.

The alternative procedure of collapsing cells has a similar effect. Consider the problem
Cell A1/B1. With collapsing, the cell is combined with an adjacent cell, say A1/B2. The
weighting adjustment is then the ratio of the population total (120) to the sample total (60)
for the collapsed cell, i.e., an adjustment of 2.00. Thus the effect of this collapsing is that
half of the population in Cell A1/B1 is being represented by sample elements in Cell
Al1/B2.

The techniques of weight trimming and collapsing cells can be applied with any method
but there are alternatives that have the advantage of being built into the weighting adjust-
ment process, rather than being modifications made after extreme weights are discovered.
Huang and Fuller (1978), Jayasuriya and Valliant (1996), Singh and Mohl (1996), Rao and
Singh (1997), and Chen, Sitter, and Wu (2002) describe methods for ensuring nonnegative
weights with regression weighting. Deville, Sirndal, and Sautory (1993) describe a logit
method that corresponds to raking and a truncated linear method that corresponds to the
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linear method, in both of which the user can specify lower and upper bounds for the
weighting adjustments. Both of these methods can be applied using the CALMAR
(calibration on margins) program, as can unconstrained raking and the linear method.
That program is available, together with documentation in French, at the INSEE website
http://www.insee.fr/fr/ppp/macro/macro.htm.

The results of applying the logit and truncated linear methods, with lower and upper
bounds of 0.5 and 2.20 respectively, to the data in Table 1 are displayed in Parts G and
H of Table 2. As can be seen from Parts B and C of the table, only Cell A3/B3 has a
weighting adjustment that exceeds 2.20 with raking and linear weighting. Placing the
restriction of a maximum weighting adjustment of 2.20 reduces the weighting adjustment
for that cell to that amount and distributes the excess weight to other cells, particularly to
cells in the A3 row and B3 column.

4. Choice of Auxiliary Variables

When a sizeable number of auxiliary variables is available for use in making weighting
adjustments, it may be that only a selection of them can be employed, even when applying
the methods described in the previous section. That selection may be guided by analyses of
the relationships of the auxiliary variables to the response or coverage rates and to the sur-
vey variables.

Consider the bias caused by nonresponse in using the simple unadjusted (base-
weighted) sample mean (y) to estimate the population mean (Y). That bias can be
expressed approximately as

)~ T -3
B(y) NEZ(YZ Y)($; — )

where ¢; is the response probability of element i (¢; > 0), ¢ is the average response
probability in the population, and N is the size of the population. As can be seen from
this formula, the bias in y arises from differential response probabilities that are associated
with the y-values. If ¢; = ¢ for all population elements, y is unbiased for Y.

To illustrate the effect of weighting adjustments, consider cell weighting. The effect of
cell weighting can be seen by expressing the bias of the unadjusted mean as

B = 3 Y W= Vobu — 80+ 1= 3 YNV~ D~ )

o N¢

where ¢ denotes cell ¢, Y,; and ¢,; are the value of y and the response probability for
element i in cell ¢, N, is the number of elements in the population in cell ¢, and Y, and
¢, are the mean of y and the average response probability in cell ¢ (Brick and Kalton
1996). The effect of cell weighting is to remove the second term from the bias. Both
the average response probabilities and average y-values must differ across cells for this
term to be nonzero. Unless these two conditions apply, cell weighting adjustments are
ineffective.

The sample mean computed with cell weighting adjustments is unbiased for Y if the first
term is zero, which occurs when the y-values and response probabilities are unrelated
within cells. If the y-values or response probabilities were constant within cells, the
adjustment mean would be unbiased. In practice, it is of course unrealistic to expect
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that weighting adjustments will remove the bias, but it is hoped that they will reduce it.
However, if the two terms in the above equation are of opposite sign, it is in fact possible
for the adjustments to increase the absolute bias (Thomsen 1973).

To be effective, adjustment cells need to differ in average response probabilities and in
y-values. Since surveys generally collect data on many variables, most emphasis is usually
placed on constructing cells that differ in response probabilities since it is likely that at
least some of the survey variables will differ in level across such cells. Techniques for
identifying auxiliary variables to be used in forming adjustment cells with differing
response probabilities include logistic regression and tree algorithms (see, for example,
Rizzo, Kalton, and Brick 1996).

The logistic regression approach for nonresponse adjustments involves developing a
logistic regression model to predict response status (respondent (1) versus nonrespondent
(0)) from the set of auxiliary variables known for both respondents and nonrespondents.
The model can then be used to predict the response probability for each of the sample
members. As described in Section 2, either the respondents’ predicted response probabil-
ities can then be used directly as the basis of the weighting adjustments or the predicted
response probabilities for all sample members can be used for forming cells for cell
weighting adjustments.

The tree algorithm approach involves the use of a branching algorithm such as CHAID,
CART, or SEARCH (see, for example, Breiman, Friedman, Olshen, and Stone 1993) to
form the nonresponse adjustment cells. The algorithm searches through the auxiliary
variables to find the one that can be used to split the full sample into two (or more) parts
(cells) in a way that best explains response status. Next, the algorithm performs the same
operation separately on each of the two cells. It then continues to do the same on each of
the four resulting cells, and so on. The process continues until the splits cease to have
useful explanatory power for response status or until the cell sample size reaches a
specified minimum level. The final cells of the resulting tree are then treated as standard
weighting adjustment cells.

When a survey collects data on only a few variables, or there are only a few variables of
key interest, then appropriate statistical models can be constructed for predicting the key
variables from the auxiliary variables. A combination of important predictors from these
models and from the models predicting response probabilities may then be used for
creating the adjustment cells.

With nonresponse adjustments the main consideration in choosing auxiliary variables is
generally that they predict response probabilities. With weighting adjustments to make the
sample data conform to external sources, however, often the main consideration is that the
auxiliary variables predict key survey variables. This is because benchmarking to external
sources that are closely related to the key survey variables increases the precision of the
survey estimates based on those variables.

5. Two Illustrations

This section briefly outlines the application of complex weighting adjustments in two
large-scale U.S. survey programs. One program collects data on food intakes by individ-
uals and the other is a panel survey of income and participation in welfare programs.
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5.1.  Surveys of food intakes

The U.S. Department of Agriculture’s (USDA) 1987-1988 Nationwide Food Consump-
tion Survey collected food use information from sampled households with interviews
spread across the seasons of the year. Since only 37 percent of occupied housing units pro-
vided the requisite data, there was a serious concern about nonresponse bias. To address
these concerns extensive benchmarking to external controls was carried out by regression
weighting (Fuller, McLoughlin, and Baker 1994). Fifteen auxiliary variables that were
believed to be related to food behaviour — including such variables as household income
as a percentage of the poverty level, household size, presence of a child under 7 years of
age, age of household head, and geographic region — were used. All but two of the external
controls came from the March 1987 U.S. Current Population Survey (CPS). Controls for
urbanisation came from another source and control for season was an even distribution
over the four seasons. All the variables except household size were treated as categorical
variables. In addition to the 25 indicator variables for the categorical variables, household
size and the square of household size were included in the regression. The regression
weights were constrained to fall within defined limits, limiting the variance inflation factor
to 1.32.

The USDA’s Continuing Survey of Food Intakes by Individuals (CSFII), conducted in
1994—-1996, achieved a much higher response rate than the 1987—1988 survey, but it also
used extensive benchmarking to external controls, primarily taken from the CPS. In the
CSFII, nonresponse adjustments were made in two stages. The first stage involved adjust-
ments for nonresponses to a screener interview and were based on characteristics of the
segment (final stage cluster) in which they fell. The second stage adjustment compensated
for nonresponse to the interview about the first day’s food intake. Cell weighting adjust-
ments were made, with cells identified by a CHAID analysis and with auxiliary variables
selected from the segment characteristics and screener responses (e.g., age, sex, income
status). The final adjustment was raking to CPS data and to equal distributions by season
and day of the week. The 16 raking dimensions were similar to those used for the 1987—
1988 survey, with household size being treated as a categorical variable. Raking was con-
ducted separately for four subgroups (males, 20 years of age or older; females, 20 years of
age or older; children 0-5 years of age; persons 6—19 years of age), thereby covering some
interaction effects. Further interactions were covered by crossclassifying auxiliary vari-
ables (e.g., age group and home ownership for those 20 years of age or older; age group
and sex for those under 20 years of age) and treating the cells of the crossclassification as a
single control variable. Chu and Goldman (1997) provide further details.

5.2.  Survey of Income and Program Participation

The Survey of Income and Program Participation (SIPP) is a repeated household panel
survey conducted by the U.S. Census Bureau. New panels were started each year from
1984 to 1993 and a revised panel design was introduced in 1996. The current discussion
relates to the 1987 SIPP panel. That panel started with a sample of about 12,300
households, and followed the members of those households for seven waves of interviews,
conducted at four-month intervals. The panel weights produced for the 1987 panel relate
only to respondents to all of the seven waves for which they were eligible. Nonresponse
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adjustments are made for the 6.7 percent of nonresponding households at the initial wave
and for the 20.8 percent of panel nonrespondents, that is, respondents at the initial wave
who failed to respond for one or more of the subsequent waves for which they were eligible.

The weighting adjustments for panel nonrespondents can employ the responses to the
initial wave interviews as auxiliary variables. Several approaches have been examined
for developing these weighting adjustments. Rizzo, Kalton, and Brick (1996) conducted
logistic regression analyses to determine which of 58 initial wave items to retain, and
thereby reduced the number of items to 31. They examined the use of several alternative
weighting adjustments including cell weighting with cells obtained from a CHAID
analysis, logistic regression weighting, raking, and a mixture of cell weighting for cells
with large sample sizes and logistic regression weighting for other cells. They found a
fair degree of similarity between the weights produced with these different methods. How-
ever, all these sets of weights were somewhat different from the current weights, which
were based on a different set of auxiliary variables.

Folsom and Witt (1994) examined the use of a constrained logistic regression model to
compensate for panel nonresponse in the 1987 SIPP panel. Their analysis suggested that
the weight adjustments should be developed separately for seven subgroups of the popula-
tion defined in terms of household income, race/ethnicity, marital status and census region.
Sizeable numbers of predictor variables were included in most models.

An, Breidt, and Fuller (1994) employed 97 CPS and 79 initial wave indicator variables
in developing regression weighting adjustments for 1987 SIPP panel respondents. The
adjustments were made in a sequence of steps. Three alternative weighting schemes
involving different ordering to the use of the CPS control totals were applied, and the
standard errors of a selection of estimates using the weights obtained from the three
schemes were compared.

6. Concluding Remarks

Recent developments for complex weighting adjustments are now being increasingly
applied. By permitting more auxiliary information to be used, they have the potential to
reduce biases arising from nonresponse and noncoverage. Benchmarking to external
data both addresses noncoverage bias and has a poststratification effect that works towards
improving the precision of some survey estimates. It needs to be recognised, however, that
when noncoverage is large and variable across the population, the overall effect of bench-
marking may well be to lower the precision of some survey estimates. The use of methods
that constrain the variability of the weighting adjustments or trim large weights can avoid
serious losses in precision.

In general these complex methods are most useful when there is a sizeable amount of
auxiliary information available. With sample adjustment for nonresponse, this situation
mostly occurs in later rounds of panel surveys and surveys with several phases of data
collection. With population adjustments for noncoverage and improved precision, it
occurs when the survey data are benchmarked to another large-scale survey, and when
a great deal is known about the population (as in some establishment surveys). When a
substantial amount of auxiliary information is available, a variety of alternative methods
may be used. Many of the methods are in fact fairly similar and the weighting adjustments
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they produce are likely to be highly correlated (Deville, Sdrndal, and Sautory 1993; Rizzo,
Kalton, and Brick 1996). Thus the choice of auxiliary variables and of the mode in which
they are employed in the adjustments may be of more significance than the choice of a
particular method.

In applying a complex weighting adjustment procedure, attention should be paid to the
assumptions of its underlying statistical model. Most of the models control to marginal
data, using some type of ‘‘no interaction’’ assumption. This assumption needs to be
carefully assessed, and modifications made if it is obviously erroneous (for example, by
combining auxiliary variables into a single variable with raking, performing the adjust-
ments separately for different subsets of the population, or including interaction terms
in regression models). Similarly, methods that automatically restrict the range of the
adjustments are redistributing the excess adjustments that would otherwise be given to
some respondents to other respondents. The appropriateness of this redistribution should
be examined. Although a complex method may be readily applied using available
computer software, the need remains for a careful review of the method’s applicability
for a given survey.

Finally, it should be noted that survey weights that include weighting adjustments for
nonresponse, for noncoverage, and for poststratification-type gains in precision should
not be treated as constants when estimating the variances of survey estimates. One
approach that deals with this complication is to use a jackknife variance estimation pro-
cedure with the weighting adjustments recomputed for each replicate. Another is to
employ a Taylor series linearization procedure that takes account of the weight variation.
See, for example, Stukel, Hidiroglou, and Sérndal (1996).
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