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Abstract

The paper discusses estimation of the total for some study variables in two business surveys
conducted by the Office for National Statistics (ONS) in the UK. The MSE cannot be the one
and only criterion of estimator quality: other desirable properties of an estimator are proposed.
Special consideration is given to the proneness of an estimator to produce large errors. This
property is particularly important in official statistics where the publication of bad estimates
may sometimes lead to great losses for society and may also be detrimental to the reputation
of the NSI. Several point estimators are explored in a simulation study. Some widely used
design-based estimators for stratified simple random sampling (and two less widely used
ones) are contrasted with a model-based estimator that explicitly draws on the specia
structure of a business population.

Acknowledgements: The main part of this work was done while the author worked for Office
for National Statistics. Part of it has appeared in Statisticsin Transition, Vol 5.
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1. Introduction

Business surveys often pose avariety of data problemsthat can be very difficult to resolve
simultaneoudly. For example, the study variable(s) may be highly skewed, there may be a
large proportion of zero responses, some negative values and there may be severa auxiliary
variables that can be used to improve estimation but these may include some extreme values.

Till recently, simple survey estimation techniques such as classical ratio or regression
estimation have been sufficient for the business surveys carried out by many National
Statistical Institutes, such as Statistics Sweden and Office for National Statistics (ONS) in the
UK. The wider use of more sophisticated estimation methods, the growing use of a greater
amount of auxiliary information in estimation, and the pressure to substantially reduce sample
sizes or to produce accurate estimates for small domains has increased the importance of
recognising and dealing with the data issues mentioned above. This paper illustrates methods
for addressing some of these issuesin areal business survey.

The choice of estimator depends on the foreseen or believed use of the resulting estimates.
One of the most important, or the most important, recipients of official business statisticsis
the national accounts. The output from the surveysis combined, adjusted and complemented
with output from other sources and goes into the national accounts. Most systems of national
accounts cannot use estimates of mean squared errors or confidence intervals because only
functions of the estimated totals are inserted into the supply and demand tables. In theory, but
probably not in practice, two estimates corresponding to the end-points of a confidence
interval rather than the single number that constitutes the point estimate could be inserted to
allow for a sengitivity study. However, for the large number of point estimates that are
combined to form the national accounts (literary thousands every quarter) the vast number of
combinations of end-points will be infeasible to handle. This fact makes properties of interval
estimates less important in business surveys than those of point estimates, as, for example,
design-bias.

2. Pros and cons with the generalised regression estimator
2.1 A refresher

The aim of many business surveysis to estimate totals and differences between or ratios of
total's. We explore mainly design-based linear estimators of thetotal t, = ZU Yy, of astudy

variable y' = (yl, y2,...yN) in a population U where the units have the labels {12,... N} .
Theissueis how to use auxiliary information effectively. We concentrate on estimation of a
single study variable. Multivariate study variable estimation issues are discussed, among
others, by Bethlehem and Kéller (1987) and Chambers (1996). Discussions of multiparameter
design issues include Holmberg (2002). Assume that there is a known auxiliary vector

X} = (Xlk Xog o ka) for each element in U. This assumption is unnecessarily strong

for most estimators, but more often than not, X, isindeed available for al unitson the framein
actual business survey systems. Cassel, Lundquist, and Selén (2002) propose a model-based
estimator that only needs auxiliary values for sample units (i.e. not even totals of xy).

A sample s of size nistaken and (Xk : yk) is assumed to be observed for al unitskin the

sample. Nonsampling errors, that is nonresponse, measurement and coverage errors are
disregarded.



The generalised regression (GREG) was introduced by Cassel, Sérndal, and Wretman (1976).
It can be written

fyreg = ngkkuYk . (1)

where Wy, = 77, Listhe sampling weight for unit k and the sum is taken over sample units.
See Sérndal, Swensson, and Wretman (1992, p. 232) for a definition of the sample-dependent
‘g-weights' gks, k=1, 2, ... n. Thusthe ‘total’ weight w,, = g, W, in (1) ispartitioned into
apurely design-dependent weight wi and aweight gys.

The GREG estimator is a special case of the caibration estimator (Deville and Sarnda 1992).
The caibration estimators have al the property that the auxiliary totals are recovered; in the

case of GREG we havezs Oks WXk = ty, wheret, isavector of totals of the components

of xx . The g-weights force the estimator to be ‘calibrated’ on t,. Note that t, may contain
totals on different levels, for example overall totals and domain totals. Notealsothat (1) is

reminiscent of a Horvitz-Thompson-estimator (HT-estimator) ty,T = stk Y of

ZU 0, Y« » athough thisis not a proper population parameter since the gs are sample

dependent. Nevertheless, this showsthat if the g-weights for a particular sample are far away
from 1 then we might be estimating something that is very different from t,.

2.2 Strong sides of the GREG

The GREG isvery flexiblein that it comprises alarge number of different estimators, some of
which are widely used. Thereisno limit to what auxiliary variables that can be used apart
from some mild mathematical restrictions. The auxiliary variables may be qualitative or
guantitative; and they may be associated with units of different level, e.g. company and loca
unit. Softwares like CLAN (Andersson and Nordberg 1998) allow the user to specify the
marginal sums to be calibrated on without having to work out the exact form of the estimator.
Furthermore, since the GREG is derived for a general set of inclusion probabilitiesit can be
specialised to any sampling design. Special cases of the GREG are discussed by, among
others, Sarndal et d. (1992).

In business gtatistics, the perceived main advantage of GREGs is that auxiliary information
will usually increase precision considerably. It may also reduce nonsampling errors. In fact, in
household surveys this may be the most important benefit of using auxiliary information,
traditionally through post-stratification. Bethlehem (1988), L undstrom and Sarndal (1999,
2001) and Fuller (2002) discuss the use of generalised regression estimation to reduce
nonresponse bias. Skinner (1999) discusses calibration as a means of reducing both
nonresponse bias and effects from measurement error. Lundstrom (2000) reports on practices
at Statistics Sweden.

One reason for the popularity of the GREG is undoubtedly its flexibility in spite of its simple
linear form, which is attractive both from a conceptual and computational point of view.
Also, the model-assi sted approach provides explanation in two ways: the model explains why
some estimators work better than others in a particular situation and the modelsin general
show how various estimators are interrel ated.

The GREG offers anice interpretation: the form of the estimator reflects the view that a
sampled element can be seen as representing g, W, —1 nonsampled unitsin addition to itself
and thus has a strong intuitive appeal. Brewer (1999, p. 36) calls this the Representative

Principle and points out that good design-based inference rests on the compliance to this
principle.



Note that the g-weights depend on both model and design. Hence the g-weights allow the
survey statistician to bring his or her beliefs, expressed in amodel, into the estimator. For an
amusing illustration consider Basu’ s elephants. In a blatant breach with the Representative
Principle, Basu (1971) gives an example of a design with the worst possible connection
between the inverse of the inclusion probabilities and the number of units a sampled unit can
be thought of representing. The elephant Sambo (unit i) is known to have a study variable
value, y;, close to the average of the population. Sambo is selected with adesign closeto a
judgement sample (or with what has later been called a balanced sample) and the very
reasonable estimator Ny; of t, is rejected in favour of the HT-estimator. In an attempt to
impose some inclusion probabilities on the design that in effect dictates that unit i should be
selected, this unitsis given inclusion probability 99/100. Since the inclusion probabilitiesin

Basu’'s example are silly, the HT weight W, = 77 * = 1 attached to the selected unit i makes it

represent far fromitself plus N — 1 nonselected units. The GREG ( 1), however, recovers the
Representative Principleif x is taken as a scalar that always takes the value 1, and if

E, (Y, )=4,andV, (Y,) =02 Thenthe g-weight is N77* and the GREG is Ny.. Herethe

‘model-adjustment’ that isimplicit in the g-weightsis drastic, since they make the inclusion

probabilities vanish altogether. A more prosaic example of therole of the g-weightsisthe
ratio estimator where the g-weightsare t, / f «z » Which isa straightforward adjustment for

sample imbal ance with respect to the auxiliary variable. In both these examples the g-weights
are constant over units, which isnot truein general.

Under certain regularity conditions, the GREG is design-consistent and asymptotically design-
unbiased (Isaki and Fuller, 1982). The former property implies the latter under mild
conditions. Although being asymptotically design-unbiased, the GREG is certainly not
(exactly) unbiased. The bias of the GREG is (Sérndal 1980)

J ~ — ~
_ZCov(ty”(l'th,T) v txj,,),
=1

where 1, isaJ-vector of onesand t,;,
that high-leverage points may cause bias, which is highlighted in following sections.

isthe jth component of fx,,. This expression shows



2.3 Problems with the GREG estimator

The GREG estimator has some serious downsides, some of which have not yet been fully
explored. The business survey example of Hedlin, Falvey, Chambers, and Kokic (2001)
shows, for aset of real data, how important good modelling practiceis. Different GREG
estimators produced wildly different results. One regression estimator gave an estimated total
which was less than 10% of the ordinary expansion estimate. All estimators they explore are,
at the first look, entirely reasonable. The difference between them lies entirely in model
choice. The fact that the sample was considerably imbalanced against the auxiliary variable
exacerbated the problem. The following four points are taken from that paper.

First, one well-known drawback is that the GREG can, and often will, give negative weights.
This may lead to poor estimates. The estimate may even be negative for a variable that cannot
take negative values. ‘ In practice, negative weights arerare...”, Stukel et a (1996, p. 119)
write. This may be true outside the realm of business surveys. However, Hedlin et al. (2001)
give an example where the estimate for a very reasonable model is close to zero due to
negative g-weights. As noted by Chambers (1996), appearance of negative weightsis
symptomatic of deeper estimation problems and model misspecification.

Second, one motivation of g-weightsis that the product of these and the design-weights are
made ‘close’ to design-weights, that is, the g-weights should be closeto 1 (Deville and
Sdrndal 1992). The g-weights do approach unity asymptotically (Sdrndal 1982). However, it
does not follow from this fact that the design weights and calibration weights are similar. In
fact, the supremum of the distance between the two sets of weightsis arbitrary large (infinite)
in some situations. Hence the Representative Principle will be upset.

Third, while it istrue that the g-weights tend to be close to 1 in large samples they can be very
far away from 1 in either direction for moderate size samples and for data that are not
‘pathological’ in any way. It is often mentioned that the calibrated weights for the raking ratio
estimator, which is another class of calibrated estimators, can be very large, but the same
behaviour of the GREG is |ess often mentioned.

Fourth, the variance can be so large that the point estimate is useless, even if the model isthe
one that fits the data best —that is, within the GREG class of models.



3. A Comparison of Some Alternative Estimators of Totals

Since business data are skewed, outlier prone and often contain a large proportion of zeroes, it
is not obvious that traditional methods of using auxiliary data, e.g. ratio and regression
estimation, have the properties they often are believed to have, such as being virtually free
from bias and having competitive variance. We shall explore some alternative estimators for
business surveys.

Most business surveys at an NSI are multipurpose with customers who use the satisticsin
different ways. The estimated totals for business surveys are particularly important asthey are
input to the National Accounts.

What properties of an estimator of the total are vital? One could think of, e.g., small variance,
negligible bias, good confidence interval or minimum risk of obtaining an estimate with large
error; or versatility or ease of implementation. We report on a simulation study in which
several GREG estimators are compared with anot widely used local regression estimator and
arobust regression estimator that is novel in adesign-based context. The former is similar to
the GREG but has the ability to accommodate local departures from the underlying linear
model.

For many estimators there is a choice of model groupsto be made (Sérndal et al. 1992, Sec.
7.5). For example, aratio model can be fitted within strata (leading to the separate ratio
estimator) or across strata (the combined ratio estimator), where strata coincide with model
groups in the former case while in the latter case the model group comprises the strata across
which the model underlying the combined ratio estimation isfitted. Thereislittle research on
how to choose model groups. Silva and Skinner (1997) minimise the mean squared error to
find the optimal set of auxiliary variables and thereby also model groups. L undstrom and
Sarnda (1999, 2001), and Lundstrém and Gustafsson (2003) discuss choice of auxiliary
variables. Here five properties for each combination of estimator and type of model group
partition have been measured. Two of the properties are rather non-traditional.

Many of the business surveys at the ONS use a stratified simple random sampling design with
four size strata within industry, three of which are genuine sampling strata and the one with
the largest unitsis a completely enumerated (CE) stratum, see Figure 1. There aretwo interval
scaled variables on the frame: register employment and turnover. Industries are important
domains of study. We assume full response and ignore measurement errors and incomplete
coverage of the target population.



Design strata (employment ~ Strategy
sizebands within the

domain)

1 A completely enumerated (CE) stratum + the
separate ratio estimator to account for
nonresponse

Genuinesampling strata +
combined ratio estimator
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Figure 1. Most common sampling and estimation strategy in an ONS business survey

domain

In Section 3.2 the model groups and estimators used in the simulation study are defined,
whose results are reported in Section 4. The paper ends with adiscussion. An earlier version
of Sections 3.2 through 4.2 was published in Hedlin (2002).

3.2 Estimators
3.2.1 Aim

Theamisto estimate the total t, = ZU y, of astudy variable y' = (yl,yz,..., yN) ina

population U. It is assumed that there is a known auxiliary variable (N x p) matrix Xy with
Xy = (xlk X oo xpk) inrow k. A sample s of size n istaken and (Xk, yk) is

observed for all units k in the sample. Let stratum quantities and sets be indexed by h. For
example, N, and s, refer to stratum size and the sample that is taken from stratum h. The
populations of interest are industries. We assume that al units are correctly classified to
industries before the sample is drawn. The terms domain (industry) and population, and the
terms sizeband and stratum, will be used interchangeably.

3.2.2 Model groups
Let subscript g index model groups in the partitioning that defines the G model groups

G
(subsets) within each of which the model isto befitted, U= J U ¢ - Threetypes of model
g=1
group partition are studied:
a) groups coincide with strata;
b) one group consists of al genuine sampling strata and another group of the CE stratum
within the industry (Figure 1);
¢) al stratawithin an industry, including the CE stratum, constitute one group.
Case bisreferred to as ‘within genuine sampling strata’. Thisisthe type of partition the
ONS use for many business surveys. Casesa and c are labelled ‘within strata’ and ‘over all
strata’.



3.2.3 Point estimators

A general form of point estimators

Many estimators used in practice are of the form
fy=2w'kys+25j(yj—9j)v (2)
kU iOs
where @ isaweight vector and @, ascalar, neither dependent on'y, and
Y= (yl, yz,...,yn). The weights ®, and @, may be sample dependent. Often it is natural
tointerpret @y . asapredicted value Y, = Y. Then(2) consists of a‘model-based’ or

‘synthetic’ term plusa‘bias adjustment’ or *correction’ term. We refer to an estimator that can
be written on the form ( 2) as a projective bias adjusted estimator (‘ projective’ because the
predicted values are projected to non-sample units or al population units). The Horvitz-

Thompson estimator is arather degenerate special case of ( 2) with w =0, [Jj , and

0, = (7{‘ , ...,n;l), say, and @, =0 for k> 1. Let X be the (n x p) matrix that isthe
sample version of Xy. For the estimatorsin this study, X = (1 xk) or X, =X,. Toseethat
the GREG can be written in theform ( 2), take Z)J = lTj_l and

1

o, =X (X DI | ;1X'S)_1X Z M, where and I, and X, are diagonal matrices with 77,

and the residual variance Jf in position (k, k), respectively.

It can readily be shown that ( 2) isalinear estimator, i.e., it can be written as a sample sum of
the products of the y, and some weights that do not depend ony. This property is highly
desirable from a national statistical institute’ s point of view. The main reason is practical: for
example, the weights can be thought of as ‘ grossing factors’, stored in one column in afile
and be applied in asimple way to al study variables without recomputation. Also, alinear

estimator isinternally consistent in the sense that if . isan estimator of the total of avariable

i, then f; +{,=1,,, for the sum of the variables. Theoretical arguments do not abound, but

one reason put forward by Sugden and Smith (2002), isthat if the population parameter to be
estimated is a single sum of afunction of the population units (most parameters of practical
interest are) then the estimator must have the same form if it is going to reduce to the
parameter when n= N.

What the weight vectors are and how Y ¢ is computed may depend on the sampling design

and the way the model isfitted. For example, the predicted values may be obtained with a
least squares fit or with a model-assisted approach involving the inverse inclusion

probabilities as weights. If ®, haszeroesin positions ‘far’ from position k then only elements
in the vicinity of kinyswill contribute to the predicted value Y, . Thusthereis atrade-off

between using as many observations as possible to predict Y, and not |etting possibly less

relevant observations far away from k play arole. Also, thereis adecision to make about the
exact impact of unitsin the vicinity of k and that of those further away.

For some estimators the bias adjustment termin ( 2 ) isaways zero (e.g. the ratio estimator),
for some other estimatorsit will take whatever value to achieve some overall property.
Regression estimators corresponding to a heteroscedastic regression model with variance

function V,, (Y, ) = o proportional to x-° or x2 (Sarndal et al. 1992, Ch. 6) are
asymptotically design-unbiased if and only if the bias adjustment is allowed to be unbounded.
As shown by Hedlin et al. (2001), this can lead to extremely poor performance for these

estimators. Also, in amodel-based setting the bias adjustment term can explicitly be regarded
as an estimate of the bias due to model misspecification (Chambers, Dorfman, and Wehrly

7



1993). If amodel M, y, = m(xk)+ £y, say, iscorrect and { is based on another, working
model M™ (perhaps asimpler model than M”) then the biasis )" v, , where v, denotes the
kU -s
unobserved residuals m(xk) — ¥ for non-sample points. The bias can be estimated from the
observed residudsr: D"V = D D76, r; = > @,.r; with some appropriate weights.
kU -s klU-s[J's jOs

Hence Za)] r; canbeviewed as an estimate of the bias due to model misspecification and a
jOs

special case of the bias adjustment termin ( 2). In adesign-based framework such as GREG

estimation, the second term of ( 2) may be Zn}l(yj - §/j ; thisterm estimates

jOs
DoV =ty =2 S
kU kKU

In general, thereis an interplay between the choice of @, and w, . The bias adjustment term

should normally be far smaller than the ‘model-based’ term. If not, thereis anindication of
model misspecification or adysfunctional relationship between the structure of the data and

what you do with them. The ratio of the bias adjustment term to Zu Y\ isanimportant
diagnostic for some GREG estimators, where alarge value indicates model problems.
However, not all estimators offer flexibility in the choice of weights ®, and @, . For those

estimators, once the estimator has been chosen one has to accept the weights that the estimator
prescribes.

Winsorisation is one way of curbing the influence of outliers that is not included in this study.
Winsorisation is avalue-modification strategy where the value of a sampled unit is adjusted
downwardsif it islarger than a predefined cut-off (Kokic and Bell 1994). Vaue modification
could be viewed as artificial and hence it may run the risk of not gaining public acceptance.
Furthermore, the main argument for Winsorisation is that of minimum mean squared error,
even if it comes at the expense of alarge bias. Minimum M SE may be strong argument for
some surveys but less so for others. Many other outlier-robust estimators have been proposed,
in particular model-based ones. Overviews include Chambers and Kokic (1993), Valliant,
Dorfman, and Royall (2000, Ch. 11) and Brewer (2002, Ch. 14).

Below follows descriptions of the estimators used in the simulations.
The Horvitz-Thompson estimator

Let

fygr = 2, W Vi (3)

be the expansion estimator for the group total t,, = ZU y I (kOg), where I (k Og)=1if
unit k belongs to group g, and 0 otherwise. Here S =Ug Nns.Let fy,T be the expansion

). Weusethelabel E for

A

estimator of thetotal t,in U (i.e., the sum of the group estimates t,
the expansion estimator in what follows.



GREG estimatorsfor model groups

Theratio estimator for some set of model groupsis (Sérndal et al. 1992, Sec. 7.7):

G t
e ygrr
fyrat = D g P (4)
g=1 Xgrmr
where x denotes an auxiliary scalar. The label for this estimator will be Rat. The Rat estimator

for the ‘within genuine sampling strata’ type of model group is the estimator the ONS uses for
many business surveys (Figure 1).

The GREG estimator ( 1) can be written as

fyreg :ZU 9k+zswk(yk_9k)1 (5)
where ¥, = X'kgég B, = (X;QZ;;H;XSQ)_lxggZ;H;ysg , and X isamatrix with

x'kg in the kth row (two special cases to be given shortly). The data are assumed to follow a
superpopulation model M for which E,, (Y, ) =x|,B, and V,, (Y,)=02 k=12 ..., N,
where the moments are taken over the model. The Rat estimator fyrat isaspecia caseof (5)
with X,.= | (k O g)xk and V), (Yk) = szk ,k=1,2,...,N. The‘Reg" estimator is another
special case with X, = | (k 0 g)(l xk). For Reg/1.0 we assume V,, (Yk) = 0?x,, and for
Reg/15V,, (Y, )= 0°%>.

The choice of variance function that gives the best fit to the data used in simulations reported
below is V,, (Y, ) = 0x;°, asisthe case for many business surveys (Brewer 2002, p. 87).
Hence, we would expect good performance for Reg/1.5.

Local and robust regression estimators

The predicted values Y, in(5) can be replaced with some other predicted values that makes

the estimator less sensitive to outliers and a nonlinear relationship between the study and
auxiliary variable. Breidt and Opsomer (2000) use alocal polynomial regression estimator

weighted with inverse inclusion probabilities w to produce predictions My that in many
caseswill be closeto Y, . The estimator, here referred to as Local, is

fyioc =D mk"'zswk(Yk_mk)- (6)
Chambers et al. (1993) and Dorfman (2000) suggest similar but model-based estimators. A
bandwidth b, and a smoothing window is defined. To predict yi only observations whose
auxiliary variable values are within the smoothing window are used. A weight function,

referred to asthe Kernel function, assigns the largest weights to units with auxiliary variable
values close to x.. A somewhat less general estimator than Breidt' s and Opsomer’sis

M, =€, (DLW, D, )" DiW,y k=12 ...,N, (7)

isad-vector with 1in thejth position and Os otherwise, D\, k=1, 2, ..., N, are
n x 2 matrices, each with [1 (Xj - xk)] inthejthrow,j=1,2,...,n; Wy, fork=1,

2, ..., N, aren x n diagonal matriceswith w, b 'K [(x, —x,)b2] incell . j) with K(0)
and by being the kernd function and the bandwidth, respectively. Apart from the presence of



the sample weight w = 773 Lin W,, the prediction rﬁk is standard in the literature on local
linear regression (e.g. Loader 1999). For afixed bandwidth, Breidt and Opsomer prove that
the sample weightsin W and in ( 6 ) make fy| oc asymptotically design-unbiased. Their
estimator has several other desirable theoretical properties. For example, the anticipated

variance attains the Godambe-Joshi lower bound asymptotically (cf Sarndal et al. 1992, p.
453). Like Breidt and Opsomer we use the Epanechikov kernel

K(ujk):max{o,%(l—ujzk)}. (8)

Chambers (1996) uses a bandwidth with fixed minimum length. For afixed minimum length,
however, the minimum bandwidth has to be longer than the longest distance between two
consecutive x-values, which for skewed populations would prohibit truly local regression.
This motivates two types of nearest neighbour bandwidth. Thefirst oneis

blgs) = Xir20 ~ Xi-207 (9)
where X,o0 and X2 @re units in the samplefile, sorted by x, in ascending order. Note that
K(ujk ) =0ifuy, = (xj = Xy )/b,ﬁs) = 1. Hence the kernel defines awindow around unit k

outside which units will not contribute to the prediction of M, . The window slides across

stratum boundaries including the CE stratum. Note that M, will cancel out in the CE stratum

in(6). Even so, the 20 smallest unitsin terms of the auxiliary variable in the CE stratum will
be used in prediction of unitsin sizeband 3. If kis so small that .., does not exist, X2 iS
taken as the minimum x-value and similarly for X..20. No adjustment has been made for these
boundary effects.

For the other type of nearest neighbour bandwidth,

blgf) = Xgra0 ™ K40 (10)

Xkra0 @Nd X 40 @re taken from the frame sorted by x, in ascending order. The number of sample
unitsin the window will vary with the z: for parts of the frame with small sample fractions

thelocal regression fit will tend to be more ‘wiggly’ than in more densely sampled aress. It
seems reasonable that a point in alightly sampled stratum should be given more influence.

Care must be taken so that D, W, D, isnot singular. The local regression estimators with
bandwidths (9) and ( 10) are labelled Local/s20 and Local/f40, respectively.

The prediction ( 7)) can be rewritten as

Z qjk (Xj - )_(Ioc,k) yj
m, = Yieek * (Xk - Xloc,k) = (11)

Z qjk (Xj - Zoc,k )2

jOs

-1
where the gy are diagonal elementsinthe Wy, Y., :quky]‘ [ijkj , and

jOs jOs
-1
Kook = 2, AjeX; [z qjk] .Notethat ¥, iswhat would have been obtained with local
jOs jOs
constant prediction without the x-variablein ( 11). Formulation ( 11) shows that the local
linear predictionis Y, , plusaterm that counteracts effects stemming from the local slope of

the data and the conditional bias that the predictor m, =y, would have exhibited in some
neighbourhood of the boundary point X;.
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Let j and k index sample and population units, respectively. Note that ( 6 ) can with the aid of
(7) bewrittenas

foe = D WY D [t 1(kDs)w ],

= ZWJ' yj+ Z{Z[l_ I(kDS)Wk]e’(Z)l(D'kaDk)_lD’kae(n)j}yj (12)

jOs jOs (KU
that is, T, = > W oY, isalinear estimator with weights

Wioe,js= Wit Z[l' I (k O S)Wk] e,(Z)l(D'kaDk )_1D;<Wk €(n); - (13)
kU

The subscript s reminds us that the weights are sample dependent. In analogy with the GREG
estimator, the local regression estimator weights can be partitioned into sampling weights w;
and ‘local g-weights'

1 [ . 1

Oiocjs =1+ W{ ZU [1_ I (k O S)Wk] é(z)l(DkaDk ) ' DkWK} €n); (14)
J

The Local/f40, Local/s20 and the E estimators are the only estimators studied here that do not
depend on the partitioning of the population into model groups. The Local estimators are of
the projective bias adjustment form ( 2). They are flexible in that for along bandwidth they
will be similar to the GREG, and for a shorter bandwidth they will capture local model
departures. Different kernels will give different distributions of weights o, within the

window. The main difference between this and Briedt’ s and Opsomer’ s versionsis the use of
variable bandwidths.

Another estimator, here called RobReg/f40, was inspired by Welsh and Ronchetti (1998) and
Kuk and Welsh (2001). One difference is that the current approach is design-based. In ( 7)),

ys isreplaced with 7' = (7], T;,...,T, ), where the tilde indicates a robust fit obtained with
bounded-influence estimation (to be specified shortly), to produce a smoothed value rﬁ; . The
advantage of projecting 7' = (f;,,,...,T, ) to each frame unit kisto allow for an asymmetric
distribution of the residuals. Hence the estimator is robust in two dimensions, first
horizontally through the bounded-influence regression, then vertically through the smoothing
of each Y separately. Here the bandwidth blEf) in(11) wasapplied. It is conjectured that
RobReg is approximately design-unbiased.

The bounded-influence method utilises the DFFITS, of each observation k, which is awell
known measure of how much the prediction for this observation's x-value would change in
terms of standard deviations of the predicted value if the regression lineis refitted without
observation k. Welsch (1980) suggests the use of the inverse DFFITS as regression weights, a
method analysed by Ryan (1997, Ch. 11). Beldey, Kuh and Welsch (1980) suggest as arule
of thumb for univariate regression that observations with larger absolute value of DFFITS,

than 2n™"°, n being the number of observations, should get special attention. The regression
weights proposed by Welsch are

1if [DFFITS | < 2n™°
& = . (15)
2n"%°|DFFITS,|™ if [DFFITS,|>2n7%°

The regression parameters are estimated with weighted |east squares with the weights
Oy x;3/4 . Theresiduals are

yk _ngﬁg

F;( =
x7*

(16)
RobReg is robust to outliers. However, it isnot of form ( 2). It isnot linear and it does not
have the internal consistency property. Theoretical properties such as bias will be devel oped
elsewhere.
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Mixture model estimators

The Karlberg (2000) estimator can be seen as a transformati on—etransformation estimator. It

is based (model-based) on a mixture model. First, define a model M towhicha lognormal
assumption will be added later on. Let Z, be the logarithm of the study variable Y, > 0.

Assumethat y,,Y,,..., Yy areredisations of the random variables Y,,Y,,..., Yy, and,
conditional on the auxiliary variable, E,; (Zk|Yk >0) = My =XioBg, Vi (Z,(|Yk > 0) =0}
where Xj, =1 (kOg)(1 Xy ), with Xz being the logarithm of the auxiliary variable,
provided that xx > 0. The parameter B, is estimated through OL S regression applied to the

logtransformed data. The model M differsfrom that of Karl berg (2000) in that different
model groups are allowed but not heteroscedasticity in the logscale. Not to burden the

notation, subscript g is suppressed from now. Let X be the matrix with x| in the kth row, and

let subscript s indicate the corresponding sample entity. To estimate the total of the
nonsampled units on the original scale, the sum of the back-transformed predicted values of
the study variable are multiplied by a bias correction factor. Let ay be the diagonal elements

in amatrix X(X'S+Xs+ )_1X' , which, incidentally, israther similar to the ‘ hat matrix’, with
s+ indicating that the matrix is restricted to positive sample values of the study variable. Let
Z, bethe predicted value for unit k on the logscale, i.e. Z, =X, B . It is reasonable to assume

that Zk is approximately normally distributed, and hence that exp(ﬁk) follows alognormal

distribution. Then E,; [exp(ﬁk )] = exp(,u +a,0°/ 2) :
(see e.g. Casellaand Berger, 1990, for the mean of alognormal distribution, and e.g. Sen and
Srivastava, 1990, for the variance of 2k )- Hence exp(ZAk ) is abiased estimator of Y, on the
original scale. Under the additiona assumption that Y, follows alognormal distribution with
mean and variance given by M , so that E, (Yk) = exp(,u + 02/2?, Karlberg derives an
approximately model-unbiased predictor:

~2 ~4
Y, :exp(Zk)exp{%(l—akk)—;J. (17)
where n, isthe number of positive el ementsin the model group and

o Z 7 = BXL X B M
0.2: s+ s+n/8_'23+ S+'B=Ze§/(n+—2), (18)
+ k=1

with g being the residuals on the logscale. If n, < 2, then the denominator of ( 18) isset to
1; this happened only once in the simulations. The Logn/pr estimate of atotal for amodel

group gis
Ng—ng n Ny
T= Pric Y + ZYK
k=1 k=1

(19)

where p,, = nglz I (Yk > 0) is the sample proportion of units with positive value of the
kOh

study variablein the sizeband h to which a unit k belongs. Alternatively, alogistic model is

fitted within each sizeband to obtain an estimated probability P, (X) for aunit with a certain

x-value to have a positive y-value. This estimator is labelled Logn/log.

In the simulations it often happened that the two groups defined by whether the study variable
is zero or not were completely separated in asense that is best explained by an example: if all
x-values for zero study variable values are smaller than those of the positive study variable
values, then the groups are completely separated. Then no ML estimates of the parameters of
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the logistic model exist. In this case, P, (x) was set to one for x-values greater than the

average of the largest and smallest of the sample x-values on either side of the separation
point, and zero otherwise. For the rather more unlikely contingency that the groups were
completely separated apart from one shared sample x-value (‘ quasi-complete separation’),

P (x) was set to ¥z for the shared point. If the sample x-values overlap the ML estimates

exist and are unique. Overlap, complete and quasi-complete separation partition the space of
data configurations (Albert and Anderson 1984).

The mixture model estimators are sensitive to errorsin &2. Therefore, RLogn/pr is obtained
by replacing (18 ) in Logn/pr with arobust estimate of the variance, 5,%. The beta coefficient
/?R was computed through a regression relationship within model groups of log(y.) on
log(x), with homoscedastic errors and weights ( 15 ). The estimate 0, Was taken as 1.4826
times the median absolute deviation of the residuals Yy, — ,Z?ka from their median. The

constant 1.4826 is chosen so as to make 5,% consistent if the residuals were standard normal.

The mixture model estimators are attractive in their relative smplicity, but they are not in
general design unbiased. They cannot be written on the form ( 2). Transforming to log scae
makes many business survey datasets nicely linear, apart from the zero-valued observations.

Theflipside is the need to estimate the potentialy influential parameter o? and, asa
consequence of the lognormal model assumption, the need to estimate the propensity for a
unit to have a zero value. The partition of the sample data into positives and zeroes makes the
effective sample data set smaller.

3.2.4 Variance estimators

Although this paper focuses on point estimation, coverage probabilities are reported and hence
variance estimates have been computed. The variance estimators below account for the
origina stratification through the inclusion probabilities. It can be shown that a g-weighted

variance estimator for { yrat for the three types of model group combined with stratified
simple random sampling (STSl) is

o) 3 2 [ 1) L3 o

tygﬂ

where g, =Yy — xk ratg With Bratg = — . Herethe g-weights are Qs = tyq / tygrr - FoOr
Xgrir
example, for within genuine sampling strata model groups, (20) is
2
- ~ t 3 1 1 1 _\2
Vsrs (trat):(#j z N:(___j Zsh(ek_eh)
t><171 h=1 n, Nh Ny -1 ’ ( 21 )

where the totalsin group g = 1 (all genuine sampling stratah =1, 2, and 3) are

3 3
:Zzshwkxk and txlzzzuhxk .
h=1 h=1

It can also be shown that the g-weighted variance estimator for the group regression model is
H

- ~ 1 1 1 2 = \2
Varg (freg )= > N2 — - — -

SI'SI(reg) hzzll: h(nh Nth _1zsngk5(ek eh) :l, (22)
where € = yj —XiB 4 with B ; defined above, and

~ ' , -1
Ok :1+(txg _tXQIT) (Zstng ng/ajz) (ng/akz)' (23)
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The variance estimator used herefor Local is

H 2
5o \2 of 1 1S,
Vsryg (tyloc)_ZNh(___j_’ (24)
et \Nh NpJng
Zsh (% ‘J7h)2 o ad 1y
, =Y, —M,an =n .
-1 Yic = Yk — Mg Vh s Yk

Breidt and Opsomer (2000) show that ( 24 ) isfor afixed bandwidth a consistent estimator of
an approximate variance

Av(fyloc): DA/ mm (25)
where I, =Yy, —my, m being the smoothed values one would get with ( 7)) based on the

whole population, and A, = 75 — 7277, with 77, being the probability that both unitsk and |

areincluded in the sample. The expression ( 25 ) has the same form as the usual approximate
variance of the GREG. Thelocal g-weights ( 14 ) could beinserted into ( 24 ). The estimator

(24 ) was used for RobReg aswell with y, — M, replacing y.

where Sﬁ =

| have not computed variance estimates for the mixture model estimators. While Karlberg
(2000) suggests arather complicated variance estimator for her estimator, we shall see that
there are bias problems with the mixture model estimators that make them less appealing,
whether the variance can be estimated accurately or not.
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4. Simulations based on MIDSS and CAPEX data

Some domains of the Quarterly Survey of Capital Expenditure (CAPEX) and the Monthly
Inquiry for the Distribution and Services Sector (MIDSS), both conducted by the ONS,
provided data for a simulation study. The sampling design for both surveysis reported in
Figure 1. The study variable isturnover for the MIDSS. Here net capital expenditure was used
asthe CAPEX study variable. For the purposes of this study, the auxiliary variable for both
the MIDSS and the CAPEX was turnover as recorded on the frame, which isthe frame
variable that corrdates most strongly with either of the study variables.

Figures 2 to 6 show scatter plots of three MIDSS and two CAPEX domains on logscale. For
confidentiality reasons the scales of the axes are suppressed. Note that the
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Figure2. MIDSS, domain A. Log of the study variable against log of the auxiliary
variable, with unity added to both variables
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Figure 3. MIDSS, domain B. Log of the study variable against log of the auxiliary

variable, with unity added to both variables
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Figure4. MIDSS, domain C. Log of the study variable against log of the auxiliary

variable, with unity added to both variables
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Figure5. CAPEX, domain U. Log of the study variable against log of the auxiliary
variable, with unity added to both variables
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Figure6. CAPEX, domain V. Log of the study variable against log of the auxiliary
variable, with unity added to both variables

CAPEX domainsU and V are very different from the MIDSS domains A, B and C. Notein
particular that the largest value of the auxiliary variablein domain V isin sizeband 3, i.e. a
sampled sizeband. The proportion zero values for the study variable israther small for the
MIDSS. For the CAPEX it is about 40% and 20% for domains U and V respectively.
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In the simulations below the existing strata have been used but the sample is re-allocated on
the frame variable turnover, with the exception of CAPEX domain V where ‘even’ sample
sizes were chosen. Sample sizes used in simulations are shown in Tables 1 to 5. The columns
labelled by N, contain the original number of respondents. Here they are considered
population sizes. One thousand samples were drawn from each domain.

Table 1. Sample sizesfor the
simulated samples, MIDSS domain A

Table 2. Sample sizesfor the
simulated samples, MIDSS domain B

Sizeband N, n, n, /N, Elz& Np, Ny n, /N,
% and %

1 39 9 23 1 73 5 7

2 33 19 57 2 51 28 54

3 52 32 62 3 88 67 77

4 43 43 100 4 74 74 100

Sum 167 103 62 Sum 286 174 61

Table 3. Sample sizesfor the
simulated samples, MIDSS domain C

Table 4. Sample sizesfor the

simulated samples, CAPEX domain U

Sizeband N, Ny n, /N, bS'ZGL N, My n,/N,
% and %

1 206 59 29 1 254 25 10

2 129 13 10 2 107 24 21

3 305 128 42 3 133 51 38

4 213 213 100 4 393 393 100

Sum 853 413 48 Sum 887 493 56

Table 5. Sample sizesfor the smulated samples, CAPEX domain V

Sizeband N, Ny n,/N,
%

1 40 10 25

2 33 10 30

3 112 30 27

4 202 202 100

Sum 387 252 65

4.1 Properties of an estimator

Consider the following measures.

1. Coefficient of variance (CV). Theratio of the standard deviation of the simulated point

estimates to the true total.

Bias. The mean of the errors of the simulated estimates divided by the true total.

Coverage probability. The 95% confidence intervals computed as + 1.96 times the square

root of the variance estimates in Section 3.2.4.

4. What proportion of the point estimates that are further away from the true total than 0.675
times the standard error of the point estimates. The constant 0.675 is so chosen that if the
estimates are normally distributed then 50% will be Non-centred.

5. The maximum of the absolute differences between the 95% and 5% percentile and the
true total, divided by the true total. This has the flavour of a minimax criterion with the
survey error, i.e. the difference between estimate and population parameter, as|oss
function. Thiscriterion islabelled Large Error.

2.
3.

Unfortunately, there is no hard and fast rule about which properties to prioritise. The first
three measures are the traditional properties that together with the M SE often are taken as the
guiding rule. Despite the strong position of the M SE, there is some arbitrariness in using
squared error loss as the one and only loss function (see also Robert, Hwang, and
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Strawderman, 1993, in particular the discussion that follows the paper). Although there is not
likely to be any other loss function that is less arbitrary than squared error loss, thisloss
function is not sacrosanct in any way. Turning to the fourth measure, based on the statistical
adage that most sampling distributions are ‘ normal in the middle’, we might expect close to
50% of the estimates to be Non-centred. The fifth measure, Large Error, is particularly
important in official statistics where the publication of bad estimates may sometimes lead to
great losses for society and may also be detrimental to the reputation of the national statistical
ingtitute. | would argue that the criterion Large Error is easier to understand and explain to the
public than arethe CV or the MSE.

4.2 Simulation results

Tables 6 to 10 report on the CV and the other measures for five domains. Table 11 showsthe
biases of the variance estimators. In the tables, the type of model group isindicated by a
number: 1 for ‘within strata’, 2 for ‘within genuine sampling strata’ and 3 for ‘over al strata' .
For example, as seen in Table 6, the estimator most widely used in ONS business survey
estimation, here called Rat_2, gives poorer CV than does the expansion estimator, E, for four
out of five domains. Some other observations are listed in connection to each table. Boxplots
of the point estimates are shown in the Appendix.

Table 6. Per cent coefficient of variation (CV) for five domains

MIDSS CAPEX
A B C U \Y

E 2.42 0.92 1.61 1.13 6.62
Rat_1 1.51 1.29 1.05 1.24 13.46
Rat_2 1.74 1.29 1.16 1.15 13.6
Rat_3 1.83 1.34 1.17 1.14 24.83
Reg/1.0_1 1.52 1.28 1.03 1.42 14.01
Reg/1.0_2 1.72 1.28 1.15 1.16 14.2
Reg/1.0 3 1.83 1.34 1.16 1.14 7.94
Reg/1.5_1 1.7 1.38 1.07 1.4 21.74
Reg/1.5 2 1.78 1.36 1.21 141 4211
Reg/1.5_3 1.83 141 1.2 1.14 19.35
Local/f40 1.87 1.36 1.19 1.13 6.42
Local/s20 1.83 1.36 1.07 1.14 6.69
RobReg/f40_1 1.87 1.49 1.06 119 19.54
RobReg/f40_2 1.83 1.37 1.17 1.27 43.85
RobReg/f40_3 1.82 1.42 1.17 1.13 12.24
Logn/pr_1 1.59 362619  0.96 8E44
Logn/pr_2 1.26 1.09 1.02 0.49 6.95
Logn/pr_3 0.77 0.81 0.58 0.33 447
Logn/log_1 1.71 379092 0.98 1E45
Logn/log_2 1.38 1.1 1.05 051 7.01
Logn/log_3 1.03 0.82 0.6 0.38 457
RLogn/pr_1 1.67 525230 0.85 8E44
RLogn/pr_2 1.45 1.16 0.8 0.58 11.83
RLogn/pr_3 0.86 0.87 0.46 0.26 6.04

Commentsto Table 6:

1. TheLogn and RLogn estimators fitted within strata broke down for several domains. The
reason that Logn and RLogn ‘within strata’ broke down for three domainsiis that few
units are sampled from sizeband 1 (Tables 2, 4 and 5), many of which may be zero. Asall
three mixture model estimators use only positive values of the study variableto fit a
lognormal model, the fit will be very unstable for small samples. However, these
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estimators fitted over al strata performed well.

2. Among design-based estimatorsit is E that gives the smallest CV for several domains.
Thereason is poor correlation between study and auxiliary variables. This lack of
correlation arises either through outliers (domain B, Figure 3) or through overall weak
association (domains U and V, Figures 5 and 6).

3. For weak-association and outlier-prone domains (such as U and V) larger groups give
smaller CV. The oppositeistrue for the MIDDS domains.

4. Intermsof CV, RobRegisamong the worst estimators for several domains, including
domain V for which estimation is particularly challenging.

5. Loca isamong the best design-based estimators for the CAPEX, and not far worse than
Rat and Reg/1.0 for the MIDSS (between 5% and 24% higher CV than the best Rat or

Rey/1.0).

6. IndomainV, Figure5, the extreme-leverage observation in sizeband 3 causes
extrapolation far beyond the sample range for al samples without this observation. The
result is unstable estimates for most estimators.

7. Reg/1.5isworsethan Reg/1.0 throughout, and far worse for domain V. Thisis rather
surprising considering that the model underlying Reg/1.5 fits data better than that of

Reg/1.0.

Table 7. Biasfor five domains (per cent of truetotal)

MIDSS CAPEX
A B C U \Y
E 0.06 -0.05 -0.01 -0.01 0.07
Rat_1 0.42 0.22 0.11 -0.02 9.91
Rat_2 0.12 0.09 0.06 -0.01 9.20
Rat_3 0.04 -0.01 0.01 -0.01 7.41
Reg/1.0_1 0.42 0.27 0.07 -0.22 4.93
Reg/1.0_2 0.13 0.09 0.06 -0.04 -2.80
Reg/1.0 3 0.04 -0.01 0.01 -0.01 0.88
Reg/1.5_1 0.25 0.12 0.05 -0.16 1.62
Reg/1.5_2 0.09 0.01 0.04 -0.10 -2.82
Reg/1.5 3 0.05 -0.01 0.02 -0.02 0.23
Local/f40 0.04 0.01 0.07 -0.01 -1.90
Local/s20 0.06 0.02 0.07 0 -3.04
RobReg/f40_1 0.04 0 0.02 -0.06 0.07
RobReg/f40_2 0.03 -0.02 0.02 -0.05 4.40
RobReg/f40_3 0.03 -0.02 0.01 -0.01 1.04
Logn/pr_1 1.11 14700 -0.04 2E43 3E167
Logn/pr_2 1.27 0.90 1.42 3.39 7.43
Logn/pr 3 1.72 1.19 1.10 3.72 33.2
Logn/log_1 1.02 13300 0.13 4E43 3E167
Logn/log_2 1.19 0.97 1.65 3.46 7.59
Logn/log_3 1.65 1.27 1.32 3.98 33.47
RLogn/pr_1 4.00 19900 -1.07 2E43 3E167
RLogn/pr_2 0.1 0.19 -0.05 3.32 9.75
RLogn/pr_3 0.74 0.51 -0.6 3.32 33.34

Commentsto Table 7:

1. Thebias can be very large for weak-association popul ations with extreme-leverage points,
such asdomain V displayed in Figure 3. Thisis particularly true for Rat applied to a
population that calls for a positive intercept. For other populations, linear or not, or outlier
prone or not, the biasis negligible for the design-based estimators, including RobReg.

2. Logn/pr and Logn/log tend to give positive bias. Thisisin accordance with Karlberg's
(2000) empirica findings. Rlogn/pr seems rather better in this respect. Consequently,
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L ogn does not perform well in terms of root MSE (not shown here). The reason for the
poor performance does not seem to be lack of lognormality; some analyses not shown
here do not indicate a poor fit to the lognormal model. Logn breaks down in terms of bias
for the same reason as stated for the CV above.

3. Thebiasisoften dlightly larger for small model groups but till negligible for all domains
but one.

Table 8. Coverage probability, in per cent, for five domains

MIDSS CAPEX
A B C U vV
E 89.0 927 906 915  87.9
Rat_1 738 639 908 836 736
Rat_2 80.6 631 912 892 688
Rat_3 799 647 932 839 317
Reg/1.0_1 727 637 911 896 8458
Reg/1.0_2 80.6 631 911 921  86.3
Reg/1.0 3 80.0 647 933 839  90.2
Reg/1.5 1 806 633 912 925  90.1
Reg/1.5_2 81.1 635 919 963  83.0
Reg/1.5 3 80.2 647 931 880 874
Local/f40 794 647 937 833 794
Local/s20 789 647 944 832 735
RobReg/f40_1 79.4 646 929 842 532
RobReg/f40_2 80.0 647 938 817  36.9
RobReg/f40_3 80.2 647 934 835 637

Commentsto Table 8:

1. The coverage probability is poor in many cases. No estimator except the E estimator
gives acceptable coverage for all domains. The reason is the non-normality of the
estimates for many domains, in particular B. The sample distribution is bimodal for this
domain. The main reason for thisto happen is the high leverage point in sizeband 3
visiblein Figure 2.

2. If the population islinear (such asthe MIDSS domains, Figures 2 to 4), then ‘within
stratum’ model groups seem worse than larger model groups, in terms of coverage
probability. This makes the lower CV for ‘within stratum’ a moot point.

3. Thevariance estimator for RobReg seems unreliable.
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Table 9. Per cent Non-centred estimatesfor five domains

MIDSS CAPEX

A B C U \Y
E 52 47 51 36 53
Rat_1 55 62 51 34 61
Rat_2 56 64 51 36 67
Rat_3 57 71 50 36 80
Reg/1.0_1 52 58 52 27 48
Reg/1.0_2 56 63 51 35 47
Reg/1.0 3 57 71 50 36 54
Reg/1.5_1 55 67 53 33 55
Reg/1.5_2 56 70 50 35 40
Reg/1.5_3 56 71 51 36 45
Localf40 56 68 50 36 56
Local/s20 58 68 49 37 57
RobReg/f40_1 54 66 51 36 39
RobReg/f40_2 56 72 51 37 27
RobReg/f40_3 56 72 50 36 46
Logn/pr_1 57 0 49 0 0
Logn/pr_2 68 41 76 100 62
Logn/pr_3 94 74 89 100 100
Logn/log_1 56 0 50 0 0
Logn/log_2 64 42 81 100 63
Logn/log_3 86 79 93 100 100
RLogn/pr_1 51 0 78 0 0
RLogn/pr_2 59 57 51 100 46
RLogn/pr_3 66 39 78 100 100

Note: a point estimate is Non-centred if it is further away from the true total than 0.675 times
its standard error.

Commentsto Table 9:

Percentages far away from 50 in Table 9 indicate a sampling distribution that is far from

normal. Numbers less than 50% indicate that the estimates are more tightly centred, and hence

have smaller error, than what would be expected if they were normally distributed.

1. Thedistributions of the estimates are clearly non-normal for domains B, U, and V.

2. Most of the design-based estimators are similar in terms of the Non-centred criterion.
However, E and RobReg stand out, giving equal or better performance.
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Table 10. Per cent estimateswith Large Error for five domains

MIDSS CAPEX
A B C U \

E 4.1 15 2.7 1.2 11.5
Rat_1 2.9 2.3 2 1.2 34.8
Rat_2 2.9 2.2 2.1 1.2 33.7
Rat 3 2.8 2.1 1.9 1.2 335
Reg/1.0_1 2.9 2.4 1.9 1.2 29.5
Reg/1.0_2 2.8 2.1 2.1 1.2 17
Reg/1.0_3 2.8 2.1 1.9 1.2 13.7
Reg/1.5 1 3 2.3 1.9 1.6 33.7
Reg/1.5_2 28 22 21 17 89.4
Reg/1.5 3 28 22 2 1.2 36
Local/f40 2.8 2.1 2 1.2 8.8
Local/s20 2.7 2.2 2 1.2 25
RobReg/f40_1 2.8 2.2 1.9 1.2 8.1
RobReg/f40_2 2.8 2.2 1.9 1.2 8.1
RobReg/f40_3 2.8 2.2 1.9 1.2 8.1
Logn/pr_1 3.9 2.7 1.6 3.9 31.9
Logn/pr_2 34 28 32 42 19.7
Logn/pr_3 3 25 21 43 42.5
Logn/log_1 3.9 2.7 1.9 4.1 23.7
Logn/log_2 3.4 3 3.4 4.3 20.2
Logn/log_3 3.1 2.6 2.3 4.7 42.5
RLogn/pr_1 32 34 05 46 374.7
RLogn/pr_2 2.4 2.1 1.3 4.3 33.1
RLogn/pr_3 2.1 1.9 0.2 3.8 43.8

Note: Large Error is defined as the maximum of the absolute differences between the 95% and
5% percentile and the true total, divided by the true total. Hence, a small value of this measure
indicate asmall risk for obtaining an estimate with a large error.

Commentsto Table 10:

1. Interms of the Large Error criterion, RobReg is the best estimator for domain V and no
worse than any other estimator for other domains. Local/f40 also performs well.

2. ThelLarge Error and Non-centred criteria combined show that the distribution of ‘within
stratum’ estimates are both more peaked and fat-tailed than the distribution for larger
model groups. Again, this makes the lower CV for ‘within stratum’ a moot point.
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Table 11. Bias of variance estimates, in per cent, for five domains

MIDSS CAPEX
A B C U v
E 3.8 4.2 3.4 3.1 2.5
Rat_1 542 516 -161  -149  -38.9
Rat_2 -189  -284  -13.7 9.3 -29.9
Rat 3 -1.4 0.2 -3.8 6.1 22.1
Reg/1.0_1 538  -50.9 -14.8  -13.1  -29.4
Reg/1.0_2 -183  -275  -143 94 -29.9
Reg/1.0 3 -1.2 0.5 -3.4 -4.2 -18.4
Reg/1.5 1 347  -167  -128  -128  -135
Reg/1.5_2 -3.6 2.9 -8.7 -3.6 9.7
Reg/1.5 3 -2.0 1.3 -3.8 1.1 2.1
Local/f40 1.3 1.8 7.3 3.3 4.3
Local/s20 3.6 0.8 14.1 2.2 1.5
RobReg/f40_1 1.3 161 7.0 8.2 -3.3
RobReg/f40_2 3.5 -0.7 -8.1 1.7 -6.8
RobReg/f40 3 7.4 7.2 -8.4 3.7 -3.0

Note: Variance estimates were computed using formulae in Section 3.2.4

Commentsto Table 11:

1. Thebiasis negative and with very large absolute value in many cases, in particular for
‘within stratum’ for GREGs. Wu and Deng (1983) aso found that the variance estimator
used herefor Rat gave large negative bias. While the large biases contribute to the poor
coverage probabilities, it is not the only reason: note the weak correlation between the
coverage probabilitiesin Table 8 and the biasin Table 11. The boxplotsin Appendix
show lack of normality of point estimates.

2. For GREGsS, the hias decreases with size of model groups.

3. Thevariance estimator for the Local estimatorsis gives reasonable results in terms of
bias.

4.3 Conditional properties

In classical design-based inference conditional properties are not given much attention.
However, most official statistics users would agree that if the sampleis severely imbalanced
in terms of an auxiliary variable that is believed to have some ‘ explanatory power’, then
properties such as design-unbiasedness that hold only as an ‘ summary measure’ over al
possible samples are less appealing than they would have been with a balanced sample —
unless the estimators have been shown to have good properties conditional on the estimate of
the auxiliary variable. Consider a simple example: if aproperly drawn random sample from a
domain turns out to contain mostly larger-than-average businessesin terms of aframe variable
and if the estimated total of the study variable for the domain is higher than last year, no
informed user would believe in this estimate. This argument is formalised by Thompson
(1997, Ch. 5).

Scatter plots of the estimated total of the study variable against the estimated total of the
auxiliary variable for MIDSS domain A are shown in Figures 7a-c, with one plot per type of
model group. It isreasonable to plot against the estimated auxiliary variable total or the
difference between this estimate and the population parameter since either aternative gives a
measure of the imbalance in the sample. Here the estimates for the study variable are plotted

against the expansion estimate of the auxiliary total, f - A loess curve was fitted to the 1000
pairs of study variable and auxiliary variable estimates for each of the estimators E, Rat,
Reg/1.0 and 1.5, Local/s20 and 40, RobReg, Logn/pr and log, and Rlogn/pr. The loess curve
was fitted with the SAS pracedure Proc Loess with the smoothing parameter set to 0.20 which
makes the bandwidth comprise 20% of the units. The distance from the dotted horizontal line,
which indicates the true total, and the fitted value gives an impression of the conditional bias.
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Asseenin Figures 7 a-c, the expansion estimator E has the largest conditional bias, apart from
the region 280,000 <t < 285,000 where f, _ iscloseto the population total. We would

expect this conditional biasto disappear in the GREG type of estimators since they are
designed to cope with this type of imbalance. Indeed, thisisthe case for ‘within stratum’
model groups (Figure 7 a), but, interestingly, the other model groups overadjust for the
imbalance (Figures 7 b and c). For these model groups the GREGs are similar to the Local
regression estimators and RobReg. With the unconditional bias deducted, the estimators with

the smallest conditional bias for regions outside 280,000 < fx,, < 285,000 arethe mixture

model estimators. In terms of conditional bias (adjusted for the unconditional bias) Logn/pr,
Logn/log, and RLogn/pr are all similar, and this for al modelgroups. The difference
discernable from Figures 7 a-c is that RLogn has smaller unconditional bias.
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estimates.

A

In principle, the conditional bias for the other domains, conditional on t, ., showed the same

pattern, although there was one conspicuous feature in MIDSS domain B and Capex domain
V: the scatter of points are almost entirely separable into two clusters. See Figure 8 for
domain B. If a sample contains the high-leverage point in sizeband 3 visible in Figure 3, the
estimate belongs to the cluster towards the lower-right corner in Figure 8, otherwise it belongs
to the other cluster. Furthermore, as can be deduced from Figure 8, the sampling distribution
of the estimated study variable total is bimodal. This explains the very poor coverage
probabilitiesin Table 8.
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5 Discussion

The GREG isavery flexible and powerful estimator that has enjoyed increasing popularity, in
particular since the publication of the book Sarndal, Swensson, and Wretman (1992). Y et
there are some downsides with the GREG. These are mainly associated with the variability of
the g-weights.

A simulation study of estimation in business surveys was conducted, in which some forms of
the GREG were contrasted with alocal regression estimator and a robust regression estimator.
Each estimator was evaluated with three types of model grouping, where relevant, against five
criteria. Three of the criteria were conventiona (bias, variance and coverage probability),
whereas the other two measured aspects of the absolute error: the proportion of the estimates
that were close to the true value and the proportion that where very far from the true value.

Some general conclusions are:

1. Thereisno estimator that isthe best. It all depends on the use of the estimates and on the
population. Different criteriawill be more important for different uses. The users,
however, should not decide what estimators are being used. The users may change but the
national statistical institute cannot afford to flit.

2. Theestimators that have the best unconditiona properties across all populations are the
expansion estimator, Reg/1.0 fitted across all strata and the Local regression estimators.

In particular, there seems to be no reason to prefer the ratio estimator to Reg/1.0.

3. Thestandard way of constructing confidence intervals (1.96 times the standard error,
estimated with formulas such as those in Sec 3.2.4) often gives poor coverage. If the main
aim is good confidence interval s then the expansion estimator is preferable, although the
price to pay will be wideintervals.

4. For design-based estimators, fitting models within strata (Ieading to estimators such as the
separate ratio or regression estimator) tends to give small CV's, but fitting models across
strata tends to make estimates more robust.

Other conclusions that concern specific estimators are:

i. Thechoice of nearest neighbour bandwidth for local regression estimators does not seem
overly sensitive.

ii. Therobust regression estimator and one of the local regression estimators are superior if
the aim is to minimise the proportion of estimates that are very far from the true value in
absoluteterms. Thisis particularly important in official statistics. These estimators have
reasonably small conditional bias, although GREGs fitted within strata have smaller
conditional bias.

iii. The model-based mixture model estimator is bias prone and will give poor estimates for
some populations. Robust estimation of the variance parameter seems to be an approach
that reduces some of the problems. Robust estimation of the dope parameter on the
logarithmic scale is an option |eft for future research. Also, if the model is fitted across
strata, including the completely enumerated stratum, the parameter estimation tends to be
more reliable. However, like the robust regression estimators, this estimator is not linear,
nor hasit theinterna consistency property.

iv. Theregression estimator that is associated with the best model (with variance about the
regression line proportional to the auxiliary raised to 1.5) is more erratic than the
regression estimator modelled on a variance proportional to the auxiliary. The reason was
seen to be variance in the bias adjustment term, i.e., the second termin (2) and (5). This
term is non-zero only for the former estimator.

High leverage points need to be addressed. Some other research of the author includes a pre-
sample diagnostic, which will assign avalueto all unitsin the sample. For units with
particularly large value of the diagnostic, action can be taken before the sampleis drawn.
They can, for example be moved to a CE stratum, or, if misclassification is the reason why
they appear in a stratum where the auxiliary variable values are in general smaller, they can be
re-classified and moved to the stratum where they rightly belong.

28



Appendix. Simulation results, boxplots

Figures A.1 and A.2 show box plots for the point estimates for the MIDSS domains A-C and
the CAPEX domains U and V. The estimator RobReg is denoted by R/f40. The scale of the y-
axisisthe same for the figuresin the same panel, but it will not be the same between panels.
The design-unbiased estimators produce, as they should, estimates with the arithmetic average
(astar) on or near the true total. Dot plots are added to the box plots for MIDSS domain B to
highlight the bimodal distribution of the point estimates for this domain. The box plots
indicate that the estimators fall into three groups: Lognorms, the HT and the others.
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