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Abstract 

 
 
The paper discusses estimation of the total for some study variables in two business surveys 
conducted by the Office for National Statistics (ONS) in the UK. The MSE cannot be the one 
and only criterion of estimator quality: other desirable properties of an estimator are proposed. 
Special consideration is given to the proneness of an estimator to produce large errors. This 
property is particularly important in official statistics where the publication of bad estimates 
may sometimes lead to great losses for society and may also be detrimental to the reputation 
of the NSI. Several point estimators are explored in a simulation study. Some widely used 
design-based estimators for stratified simple random sampling (and two less widely used 
ones) are contrasted with a model-based estimator that explicitly draws on the special 
structure of a business population.   
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1. Introduction 

Business surveys often pose a variety of data problems that can be very difficult to resolve 
simultaneously. For example, the study variable(s) may be highly skewed, there may be a 
large proportion of zero responses, some negative values and there may be several auxiliary 
variables that can be used to improve estimation but these may include some extreme values. 
 
Till recently, simple survey estimation techniques such as classical ratio or regression 
estimation have been sufficient for the business surveys carried out by many National 
Statistical Institutes, such as Statistics Sweden and Office for National Statistics (ONS) in the 
UK. The wider use of more sophisticated estimation methods, the growing use of a greater 
amount of auxiliary information in estimation, and the pressure to substantially reduce sample 
sizes or to produce accurate estimates for small domains has increased the importance of 
recognising and dealing with the data issues mentioned above. This paper illustrates methods 
for addressing some of these issues in a real business survey.  
 
The choice of estimator depends on the foreseen or believed use of the resulting estimates. 
One of the most important, or the most important, recipients of official business statistics is 
the national accounts. The output from the surveys is combined, adjusted and complemented 
with output from other sources and goes into the national accounts. Most systems of national 
accounts cannot use estimates of mean squared errors or confidence intervals because only 
functions of the estimated totals are inserted into the supply and demand tables. In theory, but 
probably not in practice, two estimates corresponding to the end-points of a confidence 
interval rather than the single number that constitutes the point estimate could be inserted to 
allow for a sensitivity study. However, for the large number of point estimates that are 
combined to form the national accounts (literary thousands every quarter) the vast number of 
combinations of end-points will be infeasible to handle. This fact makes properties of interval 
estimates less important in business surveys than those of point estimates, as, for example, 
design-bias. 

2. Pros and cons with the generalised regression estimator  

2.1 A refresher 

The aim of many business surveys is to estimate totals and differences between or ratios of 

totals. We explore mainly design-based linear estimators of the total ∑=
U ky yt  of a study 

variable ( )Nyyy K,, 21=′y  in a population U where the units have the labels { }NK,2,1 . 

The issue is how to use auxiliary information effectively. We concentrate on estimation of a 
single study variable. Multivariate study variable estimation issues are discussed, among 
others, by Bethlehem and Keller (1987) and Chambers (1996). Discussions of multiparameter 
design issues include Holmberg (2002). Assume that there is a known auxiliary vector 

( )pkkkk xxx ...21=′x  for each element in U. This assumption is unnecessarily strong 

for most estimators, but more often than not, xk is indeed available for all units on the frame in 
actual business survey systems. Cassel, Lundquist, and Selén (2002) propose a model-based 
estimator that only needs auxiliary values for sample units (i.e. not even totals of xk).  
 
A sample s of size n is taken and ( )kk y,x  is assumed to be observed for all units k in the 

sample. Nonsampling errors, that is nonresponse, measurement and coverage errors are 
disregarded.  
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The generalised regression (GREG) was introduced by Cassel, Särndal, and Wretman (1976). 
It can be written 
 

∑=
s kkksyreg ywgt̂ , ( 1 ) 

where 1−= kkw π  is the sampling weight for unit k and the sum is taken over sample units. 

See Särndal, Swensson, and Wretman (1992, p. 232) for a definition of the sample-dependent 

‘g-weights’ gks, k = 1, 2, … n. Thus the ‘total’ weight kksks wgw =′  in ( 1 ) is partitioned into 

a purely design-dependent weight wk and a weight gks.  
 
The GREG estimator is a special case of the calibration estimator (Deville and Särndal 1992). 
The calibration estimators have all the property that the auxiliary totals are recovered; in the 

case of GREG we have ks k k xs
g w =∑ x t , where tx is a vector of totals of the components 

of xk . The g-weights force the estimator to be ‘calibrated’ on tx. Note that tx may contain 
totals on different levels, for example overall totals and domain totals. Note also that ( 1 ) is 

reminiscent of a Horvitz-Thompson-estimator (HT-estimator) ŷ k ks
t w yπ =∑  of 

∑U kks yg , although this is not a proper population parameter since the gks are sample 

dependent. Nevertheless, this shows that if the g-weights for a particular sample are far away 
from 1 then we might be estimating something that is very different from ty. 
 

2.2 Strong sides of the GREG 

The GREG is very flexible in that it comprises a large number of different estimators, some of 
which are widely used. There is no limit to what auxiliary variables that can be used apart 
from some mild mathematical restrictions. The auxiliary variables may be qualitative or 
quantitative; and they may be associated with units of different level, e.g. company and local 
unit. Softwares like CLAN (Andersson and Nordberg 1998) allow the user to specify the 
marginal sums to be calibrated on without having to work out the exact form of the estimator. 
Furthermore, since the GREG is derived for a general set of inclusion probabilities it can be 
specialised to any sampling design. Special cases of the GREG are discussed by, among 
others, Särndal et al. (1992). 
 
In business statistics, the perceived main advantage of GREGs is that auxiliary information 
will usually increase precision considerably. It may also reduce nonsampling errors. In fact, in 
household surveys this may be the most important benefit of using auxiliary information, 
traditionally through post-stratification. Bethlehem (1988), Lundström and Särndal (1999, 
2001) and Fuller (2002) discuss the use of generalised regression estimation to reduce 
nonresponse bias. Skinner (1999) discusses calibration as a means of reducing both 
nonresponse bias and effects from measurement error. Lundström (2000) reports on practices 
at Statistics Sweden. 
 
One reason for the popularity of the GREG is undoubtedly its flexibility in spite of its simple 
linear form, which is attractive both from a conceptual and computational point of view.  
Also, the model-assisted approach provides explanation in two ways: the model explains why 
some estimators work better than others in a particular situation and the models in general 
show how various estimators are interrelated.  
 
The GREG offers a nice interpretation: the form of the estimator reflects the view that a 
sampled element can be seen as representing 1ks kg w −  nonsampled units in addition to itself 

and thus has a strong intuitive appeal. Brewer (1999, p. 36) calls this the Representative 
Principle and points out that good design-based inference rests on the compliance to this 
principle.  
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Note that the g-weights depend on both model and design. Hence the g-weights allow the 
survey statistician to bring his or her beliefs, expressed in a model, into the estimator. For an 
amusing illustration consider Basu’s elephants. In a blatant breach with the Representative 
Principle, Basu (1971) gives an example of a design with the worst possible connection 
between the inverse of the inclusion probabilities and the number of units a sampled unit can 
be thought of representing. The elephant Sambo (unit i) is known to have a study variable 
value, yi, close to the average of the population. Sambo is selected with a design close to a 
judgement sample (or with what has later been called a balanced sample) and the very 
reasonable estimator Nyi of ty is rejected in favour of the HT-estimator. In an attempt to 
impose some inclusion probabilities on the design that in effect dictates that unit i should be 
selected, this units is given inclusion probability 99/100. Since the inclusion probabilities in 

Basu’s example are silly, the HT weight 1−= iiw π 1≈  attached to the selected unit i makes it 

represent far from itself plus N – 1 nonselected units. The GREG ( 1 ), however, recovers the 
Representative Principle if xk is taken as a scalar that always takes the value 1, and if 

( ) βYE kM = , and ( ) 2σ=kM YV . Then the g-weight is 1−
iNπ  and the GREG is Nyi.  Here the 

‘model-adjustment’ that is implicit in the g-weights is drastic, since they make the inclusion 
probabilities vanish altogether. A more prosaic example of the role of the g-weights is the 

ratio estimator where the g-weights are πxx tt ˆ , which is a straightforward adjustment for 

sample imbalance with respect to the auxiliary variable. In both these examples the g-weights 
are constant over units, which is not true in general. 
 
Under certain regularity conditions, the GREG is design-consistent and asymptotically design-
unbiased (Isaki and Fuller, 1982). The former property implies the latter under mild 
conditions. Although being asymptotically design-unbiased, the GREG is certainly not 
(exactly) unbiased. The bias of the GREG is (Särndal 1980) 

( )( )∑
=

−′−
J

j
xjxJy ttCov

1

1 ˆ,ˆˆ
πππ t1 , 

where J1  is a J-vector of ones and πxjt̂  is the jth component of πxt̂ . This expression shows 

that high-leverage points may cause bias, which is highlighted in following sections. 
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2.3 Problems with the GREG estimator 

The GREG estimator has some serious downsides, some of which have not yet been fully 
explored. The business survey example of Hedlin, Falvey, Chambers, and Kokic (2001) 
shows, for a set of real data, how important good modelling practice is. Different GREG 
estimators produced wildly different results. One regression estimator gave an estimated total 
which was less than 10% of the ordinary expansion estimate. All estimators they explore are, 
at the first look, entirely reasonable. The difference between them lies entirely in model 
choice. The fact that the sample was considerably imbalanced against the auxiliary variable 
exacerbated the problem. The following four points are taken from that paper. 
 
First, one well-known drawback is that the GREG can, and often will, give negative weights. 
This may lead to poor estimates. The estimate may even be negative for a variable that cannot 
take negative values. ‘In practice, negative weights are rare…’, Stukel et al (1996, p. 119) 
write. This may be true outside the realm of business surveys. However, Hedlin et al. (2001) 
give an example where the estimate for a very reasonable model is close to zero due to 
negative g-weights. As noted by Chambers (1996), appearance of negative weights is 
symptomatic of deeper estimation problems and model misspecification.  
 
Second, one motivation of g-weights is that the product of these and the design-weights are 
made ‘close’ to design-weights, that is, the g-weights should be close to 1 (Deville and 
Särndal 1992). The g-weights do approach unity asymptotically (Särndal 1982).  However, it 
does not follow from this fact that the design weights and calibration weights are similar. In 
fact, the supremum of the distance between the two sets of weights is arbitrary large (infinite) 
in some situations. Hence the Representative Principle will be upset.  
 
Third, while it is true that the g-weights tend to be close to 1 in large samples they can be very 
far away from 1 in either direction for moderate size samples and for data that are not 
‘pathological’ in any way. It is often mentioned that the calibrated weights for the raking ratio 
estimator, which is another class of calibrated estimators, can be very large, but the same 
behaviour of the GREG is less often mentioned.  
 
Fourth, the variance can be so large that the point estimate is useless, even if the model is the 
one that fits the data best – that is, within the GREG class of models. 
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3. A Comparison of Some Alternative Estimators of Totals   

Since business data are skewed, outlier prone and often contain a large proportion of zeroes, it 
is not obvious that traditional methods of using auxiliary data, e.g. ratio and regression 
estimation, have the properties they often are believed to have, such as being virtually free 
from bias and having competitive variance. We shall explore some alternative estimators for 
business surveys.  
 
Most business surveys at an NSI are multipurpose with customers who use the statistics in 
different ways. The estimated totals for business surveys are particularly important as they are 
input to the National Accounts.  
 
What properties of an estimator of the total are vital? One could think of, e.g., small variance, 
negligible bias, good confidence interval or minimum risk of obtaining an estimate with large 
error; or versatility or ease of implementation. We report on a simulation study in which 
several GREG estimators are compared with a not widely used local regression estimator and 
a robust regression estimator that is novel in a design-based context. The former is similar to 
the GREG but has the ability to accommodate local departures from the underlying linear 
model.  
 
For many estimators there is a choice of model groups to be made (Särndal et al. 1992, Sec. 
7.5). For example, a ratio model can be fitted within strata (leading to the separate ratio 
estimator) or across strata (the combined ratio estimator), where strata coincide with model 
groups in the former case while in the latter case the model group comprises the strata across 
which the model underlying the combined ratio estimation is fitted. There is little research on 
how to choose model groups. Silva and Skinner (1997) minimise the mean squared error to 
find the optimal set of auxiliary variables and thereby also model groups. Lundström and 
Särndal (1999, 2001), and Lundström and Gustafsson (2003) discuss choice of auxiliary 
variables. Here five properties for each combination of estimator and type of model group 
partition have been measured. Two of the properties are rather non-traditional. 
 
Many of the business surveys at the ONS use a stratified simple random sampling design with 
four size strata within industry, three of which are genuine sampling strata and the one with 
the largest units is a completely enumerated (CE) stratum, see Figure 1. There are two interval 
scaled variables on the frame: register employment and turnover. Industries are important 
domains of study. We assume full response and ignore measurement errors and incomplete 
coverage of the target population. 
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Design strata (employment 
sizebands within the 
domain) 

Strategy 

1 A completely enumerated (CE) stratum + the 
separate ratio estimator to account for 
nonresponse 

2 

3 

 

4 

estimator ratio combined

strata sampling Genuine +











 

Figure 1. Most common sampling and estimation strategy in an ONS business survey 

domain 

 
In Section 3.2 the model groups and estimators used in the simulation study are defined, 
whose results are reported in Section 4. The paper ends with a discussion. An earlier version 
of Sections 3.2 through 4.2 was published in Hedlin (2002). 

3.2 Estimators 

3.2.1 Aim 

The aim is to estimate the total ∑=
U ky yt of a study variable ( )Nyyy ,,, 21 K=′y  in a 

population U. It is assumed that there is a known auxiliary variable (N x p) matrix XN  with  
( )pkkkk xxx ...21=′x  in row k. A sample s of size n is taken and ( )kk y,x  is 

observed for all units k in the sample. Let stratum quantities and sets be indexed by h. For 
example, Nh and sh refer to stratum size and the sample that is taken from stratum h. The 
populations of interest are industries. We assume that all units are correctly classified to 
industries before the sample is drawn. The terms domain (industry) and population, and the 
terms sizeband and stratum, will be used interchangeably.  
 

3.2.2 Model groups 

Let subscript g index model groups in the partitioning that defines the G model groups 

(subsets) within each of which the model is to be fitted, U = g

G

g
U

1=
U . Three types of model 

group partition are studied:   
a) groups coincide with strata;  
b) one group consists of all genuine sampling strata and another group of the CE stratum 

within the industry (Figure 1); 
c) all strata within an industry, including the CE stratum, constitute one group.  
Case b is referred to as ‘within genuine sampling strata’. This is the type of partition the 
ONS use for many business surveys. Cases a and c are labelled ‘within strata’ and ‘over all 
strata’.  
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3.2.3 Point estimators 

A general form of point estimators 
 
Many estimators used in practice are of the form 

=yt̂ ( )∑∑
∈∈

−+′
sj

jjj
Uk

sk yyω ˆ~yω , ( 2 ) 

where kω  is a weight vector and kω~  a scalar, neither dependent on y, and 

( )ns yyy ,,, 21 K=′y . The weights kω  and kω~  may be sample dependent. Often it is natural 

to interpret sk yω′  as a predicted value skky yω′=ˆ . Then ( 2 ) consists of a ‘model-based’ or 

‘synthetic’ term plus a ‘bias adjustment’ or ‘correction’ term. We refer to an estimator that can 
be written on the form ( 2 ) as a projective bias adjusted estimator (‘projective’ because the 
predicted values are projected to non-sample units or all population units). The Horvitz-
Thompson estimator is a rather degenerate special case of ( 2 ) with jω j ∀= ,0~ , and 

( )11
11 ...,, −−=′ nππω , say, and 0ω =′k  for k > 1. Let Xs be the (n x p) matrix that is the 

sample version of XN. For the estimators in this study, ( )kk x1=′x   or kk x=x .  To see that 

the GREG can be written in the form ( 2 ), take 1~ −= jj πω  and 

( ) 11111 −−−−− ′′=′ ssssssskk ΠΣXXΠΣXxω , where and Πs and Σs are diagonal matrices with kπ  

and the residual variance 2
kσ  in position (k, k), respectively. 

 
It can readily be shown that ( 2 ) is a linear estimator, i.e., it can be written as a sample sum of 
the products of the yk and some weights that do not depend on y. This property is highly 
desirable from a national statistical institute’s point of view. The main reason is practical: for 
example, the weights can be thought of as ‘grossing factors’, stored in one column in a file 
and be applied in a simple way to all study variables without recomputation. Also, a linear 

estimator is internally consistent in the sense that if it̂  is an estimator of the total of a variable 

i, then 21 ˆˆ tt + = 21̂+t  for the sum of the variables. Theoretical arguments do not abound, but 
one reason put forward by Sugden and Smith (2002), is that if the population parameter to be 
estimated is a single sum of a function of the population units (most parameters of practical 
interest are) then the estimator must have the same form if it is going to reduce to the 
parameter when n = N. 
 
What the weight vectors are and how sŷ  is computed may depend on the sampling design 

and the way the model is fitted. For example, the predicted values may be obtained with a 
least squares fit or with a model-assisted approach involving the inverse inclusion 
probabilities as weights. If kω  has zeroes in positions ‘far’ from position k then only elements 

in the vicinity of k in ys will contribute to the predicted value kŷ . Thus there is a trade-off 

between using as many observations as possible to predict kŷ  and not letting possibly less 

relevant observations far away from k play a role. Also, there is a decision to make about the 
exact impact of units in the vicinity of k and that of those further away. 
 
For some estimators the bias adjustment term in ( 2 ) is always zero (e.g. the ratio estimator), 
for some other estimators it will take whatever value to achieve some overall property. 
Regression estimators corresponding to a heteroscedastic regression model with variance 

function ( ) 2
kkM YV σ=  proportional to 5.1

kx  or 2
kx  (Särndal et al. 1992, Ch. 6) are 

asymptotically design-unbiased if and only if the bias adjustment is allowed to be unbounded. 
As shown by Hedlin et al. (2001), this can lead to extremely poor performance for these 
estimators. Also, in a model-based setting the bias adjustment term can explicitly be regarded 
as an estimate of the bias due to model misspecification (Chambers, Dorfman, and Wehrly 
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1993). If a model M*, ( ) kkk my ε+= x , say, is correct and t̂ is based on another, working 

model M** (perhaps a simpler model than  M* ) then the bias is ∑
−∈ sUk

kν , where νk denotes the 

unobserved residuals ( ) ˆk km y−x  for non-sample points. The bias can be estimated from the 

observed residuals rj: =∑
−∈ sUk

kν̂ ∑∑ ∑
∈

•
−∈ ∈

=
sj

jj
sUk sj

jjk rωrω &&&&  with some appropriate weights. 

Hence ∑
∈

•
sj

jj rω&&  can be viewed as an estimate of the bias due to model misspecification and a 

special case of the bias adjustment term in ( 2 ). In a design-based framework such as GREG 

estimation, the second term of ( 2 ) may be ( )∑
∈

− −
sj

jjj yyπ ˆ1 ; this term estimates 

ˆk y k
k U k U

t yν
∈ ∈

= −∑ ∑ .   

 
In general, there is an interplay between the choice of kω  and kω~ . The bias adjustment term 

should normally be far smaller than the ‘model-based’ term. If not, there is an indication of 
model misspecification or a dysfunctional relationship between the structure of the data and 

what you do with them. The ratio of the bias adjustment term to ∑U kŷ is an important 

diagnostic for some GREG estimators, where a large value indicates model problems. 
However, not all estimators offer flexibility in the choice of weights kω  and kω~ . For those 

estimators, once the estimator has been chosen one has to accept the weights that the estimator 
prescribes. 
 
Winsorisation is one way of curbing the influence of outliers that is not included in this study. 
Winsorisation is a value-modification strategy where the value of a sampled unit is adjusted 
downwards if it is larger than a predefined cut-off (Kokic and Bell 1994). Value modification 
could be viewed as artificial and hence it may run the risk of not gaining public acceptance. 
Furthermore, the main argument for Winsorisation is that of minimum mean squared error, 
even if it comes at the expense of a large bias. Minimum MSE may be strong argument for 
some surveys but less so for others. Many other outlier-robust estimators have been proposed, 
in particular model-based ones. Overviews include Chambers and Kokic (1993), Valliant, 
Dorfman, and Royall (2000, Ch. 11) and Brewer (2002, Ch. 14). 
 
Below follows descriptions of the estimators used in the simulations.  
 

The Horvitz-Thompson estimator 

 
Let  

∑=
gs kkyg ywt πˆ   ( 3 ) 

be the expansion estimator for the group total ( )gkIyt
U kyg ∈=∑ , where ( ) 1=∈ gkI  if 

unit k belongs to group g, and 0 otherwise. Here g gs U s= ∩ . Let πyt̂  be the expansion 

estimator of the total ty in U (i.e., the sum of the group estimates πygt̂ ). We use the label E for 

the expansion estimator in what follows. 
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GREG estimators for model groups 

 
The ratio estimator for some set of model groups is (Särndal et al. 1992, Sec. 7.7): 

π

π

xg

yg
G

g
xgyrat t

t
tt

ˆ

ˆ
ˆ

1
∑

=
= , ( 4 ) 

where x denotes an auxiliary scalar. The label for this estimator will be Rat. The Rat estimator 
for the ‘within genuine sampling strata’ type of model group is the estimator the ONS uses for 
many business surveys (Figure 1). 
 
The GREG estimator ( 1 ) can be written as 

( )∑ ∑ −+=
U s kkkkyreg yywyt ˆˆˆ , ( 5 ) 

where gkgky Bx ˆˆ ′= , ( ) sgsgsgsgsgsgsgsgg yΠΣXXΠΣXB 11111ˆ −−−−− ′′= , and Xsg is a matrix with 

kgx′ in the kth row (two special cases to be given shortly). The data are assumed to follow a 

superpopulation model M&  for which ( ) gkgkM YE βx′=&   and ( ) 2
kkM

YV σ=& , k = 1, 2, …, N, 

where the moments are taken over the model. The Rat estimator yratt̂  is a special case of ( 5 ) 

with ( ) kkg xgkI ∈=′x  and ( ) kkM xYV 2σ= , k = 1, 2, …, N. The ‘Reg’ estimator is another 

special case with ( )( )kkg xgkI 1∈=′x . For Reg/1.0 we assume ( ) kkM
xYV 2σ=& , and for 

Reg/1.5 ( ) 5.12
kkM xYV σ=& . 

 
The choice of variance function that gives the best fit to the data used in simulations reported 

below is ( ) 5.12
kkM xYV σ=& , as is the case for many business surveys (Brewer 2002, p. 87). 

Hence, we would expect good performance for Reg/1.5. 
 

Local and robust regression estimators 

 
The predicted values kŷ  in ( 5 ) can be replaced with some other predicted values that makes 

the estimator less sensitive to outliers and a nonlinear relationship between the study and 
auxiliary variable. Breidt and Opsomer (2000) use a local polynomial regression estimator 
weighted with inverse inclusion probabilities wk to produce predictions km̂  that in many 

cases will be close to kŷ . The estimator, here referred to as Local, is  

( )∑ ∑ −+=
U s kkkkyloc mywmt ˆˆˆ . ( 6 ) 

Chambers et al. (1993) and Dorfman (2000) suggest similar but model-based estimators. A 
bandwidth bk and a smoothing window is defined. To predict yk only observations whose 
auxiliary variable values are within the smoothing window are used. A weight function, 
referred to as the Kernel function, assigns the largest weights to units with auxiliary variable 
values close to xk. A somewhat less general estimator than Breidt’s and Opsomer’s is 

( ) ( ) skkkkkkm yWDDWDe ′′′= −1
12ˆ , k = 1, 2, …, N,   ( 7 ) 

where ( ) jde′  is a d-vector with 1 in the jth position and 0s otherwise, kD , k = 1, 2, …, N, are 

n x 2 matrices, each with ( )[ ]kj xx −1  in the jth row, j = 1, 2, …, n; Wk, for k = 1, 

2, …, N, are n x n diagonal matrices with ( )[ ]11 −− − kkjkk bxxKbw  in cell (j, j) with ( )⋅K  

and bk being the kernel function and the bandwidth, respectively. Apart from the presence of  
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the sample weight wk
1−= kπ  in Wk, the prediction km̂  is standard in the literature on local 

linear regression (e.g. Loader 1999). For a fixed bandwidth, Breidt and Opsomer prove that 

the sample weights in Wk and in ( 6 ) make yloct̂
 
asymptotically design-unbiased. Their 

estimator has several other desirable theoretical properties. For example, the anticipated 
variance attains the Godambe-Joshi lower bound asymptotically (cf Särndal et al. 1992, p. 
453). Like Breidt and Opsomer we use the Epanechikov kernel 

( ) ( )



 −= 21

4

3
,0max jkjk uuK .   ( 8 ) 

 
Chambers (1996) uses a bandwidth with fixed minimum length. For a fixed minimum length, 
however, the minimum bandwidth has to be longer than the longest distance between two 
consecutive x-values, which for skewed populations would prohibit truly local regression. 
This motivates two types of nearest neighbour bandwidth. The first one is 

( )
2020 −+ −= kk

s
k xxb ,     ( 9 ) 

where xk-20 and xk+20 are units in the sample file, sorted by xk in ascending order. Note that 

( ) 0=jkuK  if ( ) ( ) 1≥−= s
kkjjk bxxu . Hence the kernel defines a window around unit k 

outside which units will not contribute to the prediction of km̂ . The window slides across 

stratum boundaries including the CE stratum. Note that km̂  will cancel out in the CE stratum 

in ( 6 ). Even so, the 20 smallest units in terms of the auxiliary variable in the CE stratum will 
be used in prediction of units in sizeband 3. If k is so small that xk-20 does not exist, xk-20 is 
taken as the minimum x-value and similarly for xk+20. No adjustment has been made for these 
boundary effects.  
 
For the other type of nearest neighbour bandwidth, 

( )
4040 −+ −= kk

f
k xxb ,      ( 10 ) 

xk+40 and xk-40 are taken from the frame sorted by xk in ascending order. The number of sample 
units in the window will vary with the πk: for parts of the frame with small sample fractions 
the local regression fit will tend to be more ‘wiggly’ than in more densely sampled areas. It 
seems reasonable that a point in a lightly sampled stratum should be given more influence. 
Care must be taken so that kkk DWD′  is not singular. The local regression estimators with 

bandwidths ( 9 ) and ( 10 ) are labelled Local/s20  and Local/f40, respectively.  
 
The prediction ( 7 ) can be rewritten as  

( )
( )
( )∑

∑

∈

∈

−

−
−+=

sj
klocjjk

sj
jklocjjk

klockklock
xxq

yxxq

xxym
2

,

,

,,ˆ    ( 11 ) 

where the qjk are diagonal elements in the Wk , ∑ ∑
∈

−

∈








=

sj sj
jkjjkkloc qyqy

1

, , and 

∑ ∑
∈

−

∈








=

sj sj
jkjjkkloc qxqx

1

, . Note that  klocy ,  is what would have been obtained with local 

constant prediction without the x-variable in ( 11 ). Formulation ( 11 ) shows that the local 
linear prediction is klocy ,  plus a term that counteracts effects stemming from the local slope of 

the data and the conditional bias that the predictor klock ym ,ˆ =  would have exhibited in some 

neighbourhood of the boundary point x1.  
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Let j and k index sample and population units, respectively. Note that ( 6 ) can with the aid of 
( 7 ) be written as 

( )[ ]∑∑ ∈−+=
U kks jjyloc mwskIywt ˆ1ˆ  

 ( )[ ] ( ) ( ) ( )∑ ∑∑
∈ ∈

−

∈ 





 ′′′∈−+=

sj
j

Uk
jnkkkkkk

sj
jj ywskIyw eWDDWDe 1

121  ( 12 ) 

that is, ∑=
s jjslocyloc ywt ,

ˆ  is a linear estimator with weights  

( )[ ] ( ) ( ) ( ) jn
Uk

kkkkkkjjsloc wskIww eWDDWDe∑
∈

− ′′′∈−+= 1
12, 1 .  ( 13 ) 

The subscript s reminds us that the weights are sample dependent. In analogy with the GREG 
estimator, the local regression estimator weights can be partitioned into sampling weights wj 
and ‘local g-weights’ 

( )[ ] ( ) ( ){ } ( ) jnU kkkkkk
j

jsloc wskI
w

g eWDDWDe∑ ′′′∈−+= −1
12, 1

1
1   ( 14 ) 

The Local/f40, Local/s20 and the E estimators are the only estimators studied here that do not 
depend on the partitioning of the population into model groups. The Local estimators are of 
the projective bias adjustment form ( 2 ). They are flexible in that for a long bandwidth they 
will be similar to the GREG, and for a shorter bandwidth they will capture local model 
departures. Different kernels will give different distributions of weights kω  within the 

window. The main difference between this and Briedt’s and Opsomer’s versions is the use of 
variable bandwidths. 
 
Another estimator, here called RobReg/f40, was inspired by Welsh and Ronchetti (1998) and 
Kuk and Welsh (2001). One difference is that the current approach is design-based. In ( 7 ), 

sy  is replaced with ( )nrrr ~...,,~,~~
21=′r , where the tilde indicates a robust fit obtained with  

bounded-influence estimation (to be specified shortly), to produce a smoothed value *ˆ km . The 

advantage of projecting ( )nrrr ~...,,~,~~
21=′r  to each frame unit k is to allow for an asymmetric 

distribution of the residuals. Hence the estimator is robust in two dimensions, first 
horizontally through the bounded-influence regression, then vertically through the smoothing 

of each ky~  separately. Here the bandwidth ( )f
kb  in ( 11 ) was applied. It is conjectured that 

RobReg is approximately design-unbiased. 
 
The bounded-influence method utilises the DFFITSk of each observation k, which is a well 
known measure of how much the prediction for this observation’s x-value would change in 
terms of standard deviations of the predicted value if the regression line is refitted without 
observation k. Welsch (1980) suggests the use of the inverse DFFITSk as regression weights, a 
method analysed by Ryan (1997, Ch. 11). Belsley, Kuh and Welsch (1980) suggest as a rule 
of thumb for univariate regression that observations with larger absolute value of DFFITSk 
than 5.02 −n , n being the number of observations, should get special attention. The regression 
weights proposed by Welsch are  







>

≤
=

−−−

−

 2if  2

2 if  1

5.015.0

5.0

nDFFITSDFFITSn

nDFFITS

kk

k
kδ    ( 15 )   

 
The regression parameters are estimated with weighted least squares with the weights 

43−
kk xδ . The residuals are  

43

~
~

k

gkgk
k x

y
r

βx−
=        ( 16 ) 

RobReg is robust to outliers. However, it is not of form ( 2 ). It is not linear and it does not 
have the internal consistency property. Theoretical properties such as bias will be developed 
elsewhere. 
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Mixture model estimators 

 
The Karlberg (2000) estimator can be seen as a transformation–retransformation estimator. It 
is based (model-based) on a mixture model. First, define a model M&&  to which a lognormal 
assumption will be added later on. Let Zk be the logarithm of the study variable Yk > 0. 
Assume that Nyyy ...,,, 21  are realisations of the random variables NYYY ...,,, 21 , and, 

conditional on the auxiliary variable, ( ) gkggkkM
YZE βx′==> µ0&& , ( ) 20 gkkM

YZV σ=>&&  
where ( )( )21kg kI k g x′ = ∈x , with x2k being the logarithm of the auxiliary variable, 

provided that x2k  > 0. The parameter gβ  is estimated through OLS regression applied to the 

logtransformed data. The model M&&  differs from that of Karlberg (2000) in that different 
model groups are allowed but not heteroscedasticity in the logscale. Not to burden the 
notation, subscript g is suppressed from now. Let X be the matrix with kx′  in the kth row, and 

let subscript s indicate the corresponding sample entity.  To estimate the total of the 
nonsampled units on the original scale, the sum of the back-transformed predicted values of 
the study variable are multiplied by a bias correction factor. Let akk be the diagonal elements 

in a matrix ( ) XXXX ′′ −
++

1
ss , which, incidentally, is rather similar to the ‘hat matrix’, with 

s+ indicating that the matrix is restricted to positive sample values of the study variable. Let 

kẐ  be the predicted value for unit k on the logscale, i.e. βx ˆˆ
kkZ ′= . It is reasonable to assume 

that kẐ  is approximately normally distributed, and hence that ( )kẐexp  follows a lognormal 

distribution. Then ( )[ ] ( )2expˆexp 2σµ kkkM aZE +=&& ,  

(see e.g. Casella and Berger, 1990, for the mean of a lognormal distribution, and e.g. Sen and 

Srivastava, 1990, for the variance of kẐ ). Hence ( )kẐexp  is a biased estimator of Yk on the 

original scale. Under the additional assumption that Yk follows a lognormal distribution with 

mean and variance given by M&& , so that ( ) ( )2exp 2σµ +=kM YE && , Karlberg derives an 

approximately model-unbiased predictor: 

( ) ( )











−−=

+n
aZY kkkk 4

ˆ
1

2

ˆ
expˆexpˆ

42 σσ
.     ( 17 ) 

where n+  is the number of positive elements in the model group and 

2

ˆˆ
ˆ 2

−
′′−′

=
+

++++
n

ssss ββσ XXZZ ( )∑
+

=
+ −=

n

k
k ne

1

2 2 , ( 18 ) 

with ek being the residuals on the logscale. If 2≤+n , then the denominator of ( 18 ) is set to 
1; this happened only once in the simulations. The Logn/pr estimate of a total for a model 
group g is  

∑ ∑
−

= =

+=
gg gnN

k

n

k
kkhk YYpT

1 1

ˆˆˆ

 ( 19 )

 

where ( )∑
∈

− >=
hk

khhk YInp 0ˆ 1  is the sample proportion of units with positive value of the 

study variable in the sizeband h to which a unit k belongs. Alternatively, a logistic model is 
fitted within each sizeband to obtain an estimated probability ( )xphˆ  for a unit with a certain 

x-value to have a positive y-value. This estimator is labelled Logn/log.  
 
In the simulations it often happened that the two groups defined by whether the study variable 
is zero or not were completely separated in a sense that is best explained by an example: if all 
x-values for zero study variable values are smaller than those of the positive study variable 
values, then the groups are completely separated. Then no ML estimates of the parameters of 
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the logistic model exist. In this case, ( )xphˆ  was set to one for x-values greater than the 

average of the largest and smallest of the sample x-values on either side of the separation 
point, and zero otherwise. For the rather more unlikely contingency that the groups were 
completely separated apart from one shared sample x-value (‘quasi-complete separation’), 

( )xphˆ  was set to ½ for the shared point. If the sample x-values overlap the ML estimates 

exist and are unique. Overlap, complete and quasi-complete separation partition the space of 
data configurations (Albert and Anderson 1984). 
 

The mixture model estimators are sensitive to errors in 2σ̂ . Therefore, RLogn/pr is obtained 

by replacing (18 ) in Logn/pr with a robust estimate of the variance, 2ˆ Rσ . The beta coefficient 

Rβ̂  was computed through a regression relationship within model groups of log(yk) on 

log(xk), with homoscedastic errors and weights ( 15 ). The estimate Rσ̂  was taken as 1.4826 

times the median absolute deviation of the residuals kRk xy β̂−  from their median. The 

constant 1.4826 is chosen so as to make 2ˆ Rσ  consistent if the residuals were standard normal. 
 
The mixture model estimators are attractive in their relative simplicity, but they are not in 
general design unbiased. They cannot be written on the form ( 2 ). Transforming to log scale 
makes many business survey datasets nicely linear, apart from the zero-valued observations. 

The flipside is the need to estimate the potentially influential parameter 2σ  and, as a 
consequence of the lognormal model assumption, the need to estimate the propensity for a 
unit to have a zero value. The partition of the sample data into positives and zeroes makes the 
effective sample data set smaller. 
 

3.2.4  Variance estimators 

Although this paper focuses on point estimation, coverage probabilities are reported and hence 
variance estimates have been computed. The variance estimators below account for the 
original stratification through the inclusion probabilities. It can be shown that a g-weighted 
variance estimator for yratt̂  for the three types of model group combined with stratified 

simple random sampling (STSI) is  

( ) =ratSTSI tV ˆˆ ( )∑ ∑
= 











−

−







−









H

h
s hk

hhhxg

xg

hh
ee

nNn
N

t

t

1

22
2

1

111
ˆ π

,
 ( 20 ) 

where ratgkkk Bxye ˆ′−=  with 
π

π

xg

yg
ratg t

t
B

ˆ

ˆ
ˆ =  . Here the g-weights are πxgxgks ttg ˆ= . For 

example, for within genuine sampling strata model groups, ( 20 ) is 

( ) =ratSTSI tV ˆˆ ( )∑ ∑
=









−

−







−







 3

1

22

2

1

1

1

111
ˆ

h
s hk

hhhx

x

hh
ee

nNn
N

t

t

π
,
 ( 21 ) 

where the totals in group g = 1 (all genuine sampling strata h = 1, 2, and 3)  are 

 ∑∑
=

=
3

1
1ˆ

h
s kkx
h

xwt π  and ∑∑
=

=
3

1
1

h
U kx

h
xt .  

It can also be shown that the g-weighted variance estimator for the group regression model is 

( )=regSTSI tV ˆˆ ( )∑ ∑
= 











−

−







−

H

h
s hkks

hhh hh
eeg

nNn
N

1

222

1

111
, ( 22 )

 
 

where gkkk ye Bx ˆ′−=  with gB̂  defined above, and 

 ( ) ( ) ( )212ˆ1 kkgs jjgjgjxgxgks wg σσπ xxxtt
−∑ ′′

−+= . ( 23 ) 
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The variance estimator used here for Local is  

( ) ∑
=









−=

H

h h

h

hh
hylocSTSI n

S

Nn
NtV

1

2
2 11ˆˆ , ( 24 ) 

where 
( )

1

2

2

−

−
=
∑

h

s hk

h n
S h

γγ
, kkk my ˆ−=γ , and ∑−=

hs kh n γγ 1 . 

Breidt and Opsomer (2000) show that ( 24 ) is for a fixed bandwidth a consistent estimator of  
an approximate variance 

( ) =yloctAV ˆ ∑∑ ΓΓ∆
U lklkkl ππ ,   ( 25 ) 

where kkk my −=Γ , mk being the smoothed values one would get with ( 7 ) based on the 

whole population, and lkklkl πππ −=∆  with klπ  being the probability that both units k and l 

are included in the sample. The expression ( 25 ) has the same form as the usual approximate 
variance of the GREG.  The local g-weights ( 14 ) could be inserted into ( 24 ). The estimator 

( 24 ) was used for RobReg as well with *ˆ kk my −  replacing γk. 

 
I have not computed variance estimates for the mixture model estimators. While Karlberg 
(2000) suggests a rather complicated variance estimator for her estimator, we shall see that 
there are bias problems with the mixture model estimators that make them less appealing, 
whether the variance can be estimated accurately or not. 
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4. Simulations based on MIDSS and CAPEX data 

Some domains of the Quarterly Survey of Capital Expenditure (CAPEX) and the Monthly 
Inquiry for the Distribution and Services Sector (MIDSS), both conducted by the ONS, 
provided data for a simulation study. The sampling design for both surveys is reported in 
Figure 1. The study variable is turnover for the MIDSS. Here net capital expenditure was used 
as the CAPEX study variable. For the purposes of this study, the auxiliary variable for both 
the MIDSS and the CAPEX was turnover as recorded on the frame, which is the frame 
variable that correlates most strongly with either of the study variables.  
 
Figures 2 to 6 show scatter plots of three MIDSS and two CAPEX domains on logscale. For 
confidentiality reasons the scales of the axes are suppressed. Note that the  
 

 
Figure 2. MIDSS, domain A. Log of the study variable against log of the auxiliary 
variable, with unity added to both variables  
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Figure 3. MIDSS, domain B. Log of the study variable against log of the auxiliary 
variable, with unity added to both variables 

 
Figure 4. MIDSS, domain C. Log of the study variable against log of the auxiliary 
variable, with unity added to both variables 
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Figure 5. CAPEX, domain U. Log of the study variable against log of the auxiliary 
variable, with unity added to both variables 

 
Figure 6. CAPEX, domain V. Log of the study variable against log of the auxiliary 
variable, with unity added to both variables 
 
CAPEX domains U and V are very different from the MIDSS domains A, B and C. Note in 
particular that the largest value of the auxiliary variable in domain V is in sizeband 3, i.e. a 
sampled sizeband. The proportion zero values for the study variable is rather small for the 
MIDSS. For the CAPEX it is about 40% and 20% for domains U and V respectively. 
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In the simulations below the existing strata have been used but the sample is re-allocated on 
the frame variable turnover, with the exception of CAPEX domain V where ‘even’ sample 
sizes were chosen. Sample sizes used in simulations are shown in Tables 1 to 5. The columns 
labelled by Nh contain the original number of respondents. Here they are considered 
population sizes. One thousand samples were drawn from each domain.  
 
Table 1. Sample sizes for the    Table 2. Sample sizes for the  
simulated samples, MIDSS domain A simulated samples, MIDSS domain B 

Sizeband Nh  nh  
hh Nn  

% 

 Size-
band 

Nh  nh  
hh Nn  

% 
 1 39 9 23   1 73 5 7 
 2 33 19 57   2 51 28 54 
 3 52 32 62   3 88 67 77 
 4 43 43 100   4 74 74 100 
 Sum 167 103 62   Sum 286 174 61 
 
Table 3. Sample sizes for the     Table 4. Sample sizes for the  
simulated samples, MIDSS domain C simulated samples, CAPEX domain U 

Sizeband Nh  nh  
hh Nn  

% 

 Size-
band 

Nh  nh  
hh Nn  

% 
 1 206 59 29   1 254 25 10 
 2 129 13 10   2 107 24 21 
 3 305 128 42   3 133 51 38 
 4 213 213 100   4 393 393 100 
 Sum 853 413 48   Sum 887 493 56 
 
Table 5. Sample sizes for the simulated samples, CAPEX domain V 

Sizeband Nh  nh  
hh Nn  

% 
 1 40 10 25 
 2 33 10 30 
 3 112 30 27 
 4 202 202 100 
 Sum 387 252 65 
 
 

4.1 Properties of an estimator 

Consider the following measures. 
1. Coefficient of variance (CV). The ratio of the standard deviation of the simulated point 

estimates to the true total.  
2. Bias. The mean of the errors of the simulated estimates divided by the true total. 
3. Coverage probability. The 95% confidence intervals computed as ± 1.96 times the square 

root of the variance estimates in Section 3.2.4. 
4. What proportion of the point estimates that are further away from the true total than 0.675 

times the standard error of the point estimates. The constant 0.675 is so chosen that if the 
estimates are normally distributed then 50% will be Non-centred. 

5. The maximum of the absolute differences between the 95% and 5% percentile and the 
true total, divided by the true total. This has the flavour of a minimax criterion with the 
survey error, i.e. the difference between estimate and population parameter, as loss 
function. This criterion is labelled Large Error. 

 
Unfortunately, there is no hard and fast rule about which properties to prioritise. The first 
three measures are the traditional properties that together with the MSE often are taken as the 
guiding rule. Despite the strong position of the MSE, there is some arbitrariness in using 
squared error loss as the one and only loss function (see also Robert, Hwang, and 
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Strawderman, 1993, in particular the discussion that follows the paper). Although there is not 
likely to be any other loss function that is less arbitrary than squared error loss, this loss 
function is not sacrosanct in any way. Turning to the fourth measure, based on the statistical 
adage that most sampling distributions are ‘normal in the middle’, we might expect close to 
50% of the estimates to be Non-centred. The fifth measure, Large Error, is particularly 
important in official statistics where the publication of bad estimates may sometimes lead to 
great losses for society and may also be detrimental to the reputation of the national statistical 
institute. I would argue that the criterion Large Error is easier to understand and explain to the 
public than are the CV or the MSE.  
 
 
4.2 Simulation results 

Tables 6 to 10 report on the CV and the other measures for five domains. Table 11 shows the 
biases of the variance estimators. In the tables, the type of model group is indicated by a 
number: 1 for ‘within strata’, 2 for ‘within genuine sampling strata’ and 3 for ‘over all strata’. 
For example, as seen in Table 6, the estimator most widely used in ONS business survey 
estimation, here called Rat_2, gives poorer CV than does the expansion estimator, E, for four 
out of five domains. Some other observations are listed in connection to each table. Boxplots 
of the point estimates are shown in the Appendix. 
 
Table 6. Per cent coefficient of variation (CV) for five domains 
 MIDSS CAPEX 

  A B C U V 

E 2.42 0.92 1.61 1.13 6.62 

Rat_1 1.51 1.29 1.05 1.24 13.46 

Rat_2 1.74 1.29 1.16 1.15 13.6 

Rat_3 1.83 1.34 1.17 1.14 24.83 

Reg/1.0_1 1.52 1.28 1.03 1.42 14.01 

Reg/1.0_2 1.72 1.28 1.15 1.16 14.2 

Reg/1.0_3 1.83 1.34 1.16 1.14 7.94 

Reg/1.5_1 1.7 1.38 1.07 1.4 21.74 

Reg/1.5_2 1.78 1.36 1.21 1.41 42.11 

Reg/1.5_3 1.83 1.41 1.2 1.14 19.35 

Local/f40 1.87 1.36 1.19 1.13 6.42 

Local/s20 1.83 1.36 1.07 1.14 6.69 

RobReg/f40_1 1.87 1.49 1.06 1.19 19.54 

RobReg/f40_2 1.83 1.37 1.17 1.27 43.85 

RobReg/f40_3 1.82 1.42 1.17 1.13 12.24 

Logn/pr_1 1.59 362619 0.96 8E44 .. 

Logn/pr_2 1.26 1.09 1.02 0.49 6.95 

Logn/pr_3 0.77 0.81 0.58 0.33 4.47 

Logn/log_1 1.71 379092 0.98 1E45 .. 

Logn/log_2 1.38 1.1 1.05 0.51 7.01 

Logn/log_3 1.03 0.82 0.6 0.38 4.57 

RLogn/pr_1 1.67 525230 0.85 8E44 .. 

RLogn/pr_2 1.45 1.16 0.8 0.58 11.83 

RLogn/pr_3 0.86 0.87 0.46 0.26 6.04 
 
 
Comments to Table 6: 
1. The Logn and RLogn estimators fitted within strata broke down for several domains. The 

reason that Logn and RLogn ‘within strata’ broke down for three domains is that few 
units are sampled from sizeband 1 (Tables 2, 4 and 5), many of which may be zero. As all 
three mixture model estimators use only positive values of the study variable to fit a 
lognormal model, the fit will be very unstable for small samples. However, these 



 20

estimators fitted over all strata performed well. 
2. Among design-based estimators it is E that gives the smallest CV for several domains. 

The reason is poor correlation between study and auxiliary variables. This lack of 
correlation arises either through outliers (domain B, Figure 3) or through overall weak 
association (domains U and V, Figures 5 and 6). 

3. For weak-association and outlier-prone domains (such as U and V) larger groups give 
smaller CV. The opposite is true for the MIDDS domains. 

4. In terms of CV, RobReg is among the worst estimators for several domains, including 
domain V for which estimation is particularly challenging. 

5. Local is among the best design-based estimators for the CAPEX, and not far worse than 
Rat and Reg/1.0 for the MIDSS (between 5% and 24% higher CV than the best Rat or 
Reg/1.0). 

6. In domain V, Figure 5, the extreme-leverage observation in sizeband 3 causes 
extrapolation far beyond the sample range for all samples without this observation. The 
result is unstable estimates for most estimators.  

7. Reg/1.5 is worse than Reg/1.0 throughout, and far worse for domain V. This is rather 
surprising considering that the model underlying Reg/1.5 fits data better than that of 
Reg/1.0. 

 
 
Table 7. Bias for five domains (per cent of true total) 
 MIDSS CAPEX 

  A B C U V 

E 0.06 -0.05 -0.01 -0.01 0.07 

Rat_1 0.42 0.22 0.11 -0.02 9.91 

Rat_2 0.12 0.09 0.06 -0.01 9.20 

Rat_3 0.04 -0.01 0.01 -0.01 7.41 

Reg/1.0_1 0.42 0.27 0.07 -0.22 4.93 

Reg/1.0_2 0.13 0.09 0.06 -0.04 -2.80 

Reg/1.0_3 0.04 -0.01 0.01 -0.01 0.88 

Reg/1.5_1 0.25 0.12 0.05 -0.16 1.62 

Reg/1.5_2 0.09 0.01 0.04 -0.10 -2.82 

Reg/1.5_3 0.05 -0.01 0.02 -0.02 0.23 

Local/f40 0.04 0.01 0.07 -0.01 -1.90 

Local/s20 0.06 0.02 0.07 0 -3.04 

RobReg/f40_1 0.04 0 0.02 -0.06 0.07 

RobReg/f40_2 0.03 -0.02 0.02 -0.05 4.40 

RobReg/f40_3 0.03 -0.02 0.01 -0.01 1.04 

Logn/pr_1 1.11 14700 -0.04 2E43 3E167 

Logn/pr_2 1.27 0.90 1.42 3.39 7.43 

Logn/pr_3 1.72 1.19 1.10 3.72 33.2 

Logn/log_1 1.02 13300 0.13 4E43 3E167 

Logn/log_2 1.19 0.97 1.65 3.46 7.59 

Logn/log_3 1.65 1.27 1.32 3.98 33.47 

RLogn/pr_1 4.00 19900 -1.07 2E43 3E167 

RLogn/pr_2 0.1 0.19 -0.05 3.32 9.75 

RLogn/pr_3 0.74 0.51 -0.6 3.32 33.34 
 
 
Comments to Table 7: 
1. The bias can be very large for weak-association populations with extreme-leverage points, 

such as domain V displayed in Figure 3. This is particularly true for Rat applied to a 
population that calls for a positive intercept. For other populations, linear or not, or outlier 
prone or not, the bias is negligible for the design-based estimators, including RobReg. 

2. Logn/pr and Logn/log tend to give positive bias. This is in accordance with Karlberg’s 
(2000) empirical findings. Rlogn/pr seems rather better in this respect. Consequently, 
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Logn does not perform well in terms of root MSE (not shown here). The reason for the 
poor performance does not seem to be lack of lognormality; some analyses not shown 
here do not indicate a poor fit to the lognormal model. Logn breaks down in terms of bias 
for the same reason as stated for the CV above. 

3. The bias is often slightly larger for small model groups but still negligible for all domains 
but one.  
 

 
Table 8. Coverage probability, in per cent, for five domains 
 MIDSS CAPEX 

  A B C U V 

E 89.0 92.7 90.6 91.5 87.9 

Rat_1 73.8 63.9 90.8 83.6 73.6 

Rat_2 80.6 63.1 91.2 89.2 68.8 

Rat_3 79.9 64.7 93.2 83.9 31.7 

Reg/1.0_1 72.7 63.7 91.1 89.6 84.8 

Reg/1.0_2 80.6 63.1 91.1 92.1 86.3 

Reg/1.0_3 80.0 64.7 93.3 83.9 90.2 

Reg/1.5_1 80.6 63.3 91.2 92.5 90.1 

Reg/1.5_2 81.1 63.5 91.9 96.3 83.0 

Reg/1.5_3 80.2 64.7 93.1 88.0 87.4 

Local/f40 79.4 64.7 93.7 83.3 79.4 

Local/s20 78.9 64.7 94.4 83.2 73.5 

RobReg/f40_1 79.4 64.6 92.9 84.2 53.2 

RobReg/f40_2 80.0 64.7 93.8 81.7 36.9 

RobReg/f40_3 80.2 64.7 93.4 83.5 63.7 
 
 
Comments to Table 8: 
1. The coverage probability is poor in many cases. No estimator except the E estimator 

gives acceptable coverage for all domains. The reason is the non-normality of the 
estimates for many domains, in particular B. The sample distribution is bimodal for this 
domain. The main reason for this to happen is the high leverage point in sizeband 3 
visible in Figure 2. 

2. If the population is linear (such as the MIDSS domains, Figures 2 to 4), then ‘within 
stratum’ model groups seem worse than larger model groups, in terms of coverage 
probability. This makes the lower CV for ‘within stratum’ a moot point. 

3. The variance estimator for RobReg seems unreliable. 
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Table 9. Per cent Non-centred estimates for five domains 
 MIDSS CAPEX 

  A B C U V 

E 52 47 51 36 53 

Rat_1 55 62 51 34 61 

Rat_2 56 64 51 36 67 

Rat_3 57 71 50 36 80 

Reg/1.0_1 52 58 52 27 48 

Reg/1.0_2 56 63 51 35 47 

Reg/1.0_3 57 71 50 36 54 

Reg/1.5_1 55 67 53 33 55 

Reg/1.5_2 56 70 50 35 40 

Reg/1.5_3 56 71 51 36 45 

Localf40 56 68 50 36 56 

Local/s20 58 68 49 37 57 

RobReg/f40_1 54 66 51 36 39 

RobReg/f40_2 56 72 51 37 27 

RobReg/f40_3 56 72 50 36 46 

Logn/pr_1 57 0 49 0 0 

Logn/pr_2 68 41 76 100 62 

Logn/pr_3 94 74 89 100 100 

Logn/log_1 56 0 50 0 0 

Logn/log_2 64 42 81 100 63 

Logn/log_3 86 79 93 100 100 

RLogn/pr_1 51 0 78 0 0 

RLogn/pr_2 59 57 51 100 46 

RLogn/pr_3 66 39 78 100 100 

Note: a point estimate is Non-centred if it is further away from the true total than 0.675 times 
its standard error. 
 
 
Comments to Table 9: 
Percentages far away from 50 in Table 9 indicate a sampling distribution that is far from 
normal. Numbers less than 50% indicate that the estimates are more tightly centred, and hence 
have smaller error, than what would be expected if they were normally distributed.  
1. The distributions of the estimates are clearly non-normal for domains B, U, and V. 
2. Most of the design-based estimators are similar in terms of the Non-centred criterion. 

However, E and RobReg stand out, giving equal or better performance.  
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Table 10. Per cent estimates with Large Error for five domains 
 MIDSS CAPEX 

  A B C U V 

E 4.1 1.5 2.7 1.2 11.5 

Rat_1 2.9 2.3 2 1.2 34.8 

Rat_2 2.9 2.2 2.1 1.2 33.7 

Rat_3 2.8 2.1 1.9 1.2 33.5 

Reg/1.0_1 2.9 2.4 1.9 1.2 29.5 

Reg/1.0_2 2.8 2.1 2.1 1.2 17 

Reg/1.0_3 2.8 2.1 1.9 1.2 13.7 

Reg/1.5_1 3 2.3 1.9 1.6 33.7 

Reg/1.5_2 2.8 2.2 2.1 1.7 89.4 

Reg/1.5_3 2.8 2.2 2 1.2 36 

Local/f40 2.8 2.1 2 1.2 8.8 

Local/s20 2.7 2.2 2 1.2 25 

RobReg/f40_1 2.8 2.2 1.9 1.2 8.1 

RobReg/f40_2 2.8 2.2 1.9 1.2 8.1 

RobReg/f40_3 2.8 2.2 1.9 1.2 8.1 

Logn/pr_1 3.9 2.7 1.6 3.9 31.9 

Logn/pr_2 3.4 2.8 3.2 4.2 19.7 

Logn/pr_3 3 2.5 2.1 4.3 42.5 

Logn/log_1 3.9 2.7 1.9 4.1 23.7 

Logn/log_2 3.4 3 3.4 4.3 20.2 

Logn/log_3 3.1 2.6 2.3 4.7 42.5 

RLogn/pr_1 3.2 3.4 0.5 4.6 374.7 

RLogn/pr_2 2.4 2.1 1.3 4.3 33.1 

RLogn/pr_3 2.1 1.9 0.2 3.8 43.8 

Note: Large Error is defined as the maximum of the absolute differences between the 95% and 
5% percentile and the true total, divided by the true total. Hence, a small value of this measure 
indicate a small risk for obtaining an estimate with a large error. 
 
 
Comments to Table 10: 
1. In terms of the Large Error criterion, RobReg is the best estimator for domain V and no 

worse than any other estimator for other domains. Local/f40 also performs well. 
2. The Large Error and Non-centred criteria combined show that the distribution of ‘within 

stratum’ estimates are both more peaked and fat-tailed than the distribution for larger 
model groups. Again, this makes the lower CV for ‘within stratum’ a moot point. 
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Table 11. Bias of variance estimates, in per cent, for five domains 
 MIDSS CAPEX 

  A B C U V 

E 3.8 4.2 3.4 3.1 2.5 

Rat_1 -54.2 -51.6 -16.1 -14.9 -38.9 

Rat_2 -18.9 -28.4 -13.7 -9.3 -29.9 

Rat_3 -1.4 0.2 -3.8 -6.1 -22.1 

Reg/1.0_1 -53.8 -50.9 -14.8 -13.1 -29.4 

Reg/1.0_2 -18.3 -27.5 -14.3 -9.4 -29.9 

Reg/1.0_3 -1.2 0.5 -3.4 -4.2 -18.4 

Reg/1.5_1 -34.7 -16.7 -12.8 -12.8 -13.5 

Reg/1.5_2 -3.6 -2.9 -8.7 -3.6 -9.7 

Reg/1.5_3 -2.0 1.3 -3.8 -1.1 2.1 

Local/f40 1.3 1.8 -7.3 3.3 4.3 

Local/s20 3.6 0.8 14.1 2.2 1.5 

RobReg/f40_1 1.3 -16.1 7.0 8.2 -3.3 

RobReg/f40_2 3.5 -0.7 -8.1 1.7 -6.8 

RobReg/f40_3 7.4 -7.2 -8.4 3.7 -3.0 

Note: Variance estimates were computed using formulae in Section 3.2.4 
 
Comments to Table 11: 
1. The bias is negative and with very large absolute value in many cases, in particular for 

‘within stratum’ for GREGs. Wu and Deng (1983) also found that the variance estimator 
used here for Rat gave large negative bias. While the large biases contribute to the poor 
coverage probabilities, it is not the only reason: note the weak correlation between the 
coverage probabilities in Table 8 and the bias in Table 11. The boxplots in Appendix 
show lack of normality of point estimates. 

2. For GREGs, the bias decreases with size of model groups. 
3. The variance estimator for the Local estimators is gives reasonable results in terms of 

bias. 
 

4.3 Conditional properties 

In classical design-based inference conditional properties are not given much attention. 
However, most official statistics users would agree that if the sample is severely imbalanced 
in terms of an auxiliary variable that is believed to have some ‘explanatory power’, then 
properties such as design-unbiasedness that hold only as an ‘summary measure’ over all 
possible samples are less appealing than they would have been with a balanced sample – 
unless the estimators have been shown to have good properties conditional on the estimate of 
the auxiliary variable. Consider a simple example: if a properly drawn random sample from a 
domain turns out to contain mostly larger-than-average businesses in terms of a frame variable 
and if the estimated total of the study variable for the domain is higher than last year, no 
informed user would believe in this estimate. This argument is formalised by Thompson 
(1997, Ch. 5).  
 
Scatter plots of the estimated total of the study variable against the estimated total of the 
auxiliary variable for MIDSS domain A are shown in Figures 7a-c, with one plot per type of 
model group. It is reasonable to plot against the estimated auxiliary variable total or the 
difference between this estimate and the population parameter since either alternative gives a 
measure of the imbalance in the sample. Here the estimates for the study variable are plotted 

against the expansion estimate of the auxiliary total, πxt̂ . A loess curve was fitted to the 1000 

pairs of study variable and auxiliary variable estimates for each of the estimators E, Rat, 
Reg/1.0 and 1.5, Local/s20 and f40, RobReg, Logn/pr and log, and Rlogn/pr. The loess curve 
was fitted with the SAS procedure Proc Loess with the smoothing parameter set to 0.20 which 
makes the bandwidth comprise 20% of the units. The distance from the dotted horizontal line, 
which indicates the true total, and the fitted value gives an impression of the conditional bias.  
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As seen in Figures 7 a-c, the expansion estimator E has the largest conditional bias, apart from 

the region 000,285ˆ000,280 << πxt  where πxt̂  is close to the population total. We would 

expect this conditional bias to disappear in the GREG type of estimators since they are 
designed to cope with this type of imbalance. Indeed, this is the case for ‘within stratum’ 
model groups (Figure 7 a), but, interestingly, the other model groups overadjust for the 
imbalance (Figures 7 b and c). For these model groups the GREGs are similar to the Local 
regression estimators and RobReg. With the unconditional bias deducted, the estimators with 

the smallest conditional bias for regions outside 000,285ˆ000,280 << πxt  are the mixture 

model estimators. In terms of conditional bias (adjusted for the unconditional bias) Logn/pr, 
Logn/log, and RLogn/pr are all similar, and this for all modelgroups. The difference 
discernable from Figures 7 a-c is that RLogn has smaller unconditional bias.  
 
 

Figure 7 a) Domain A, model groups: within strata 
 

Local (s20, f40) 
and RobReg 

Logn (pr and log) 

others 

E 
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Figure 7 b) Domain A, within genuine sampling strata model groups 

 
Figure 7 c) Domain A, model group: over all strata.  
The estimated total of the study variable against the estimated total of the auxiliary 
variable. Loess curves indicate the conditional bias; horizontal and vertical lines indicate 
true totals. 

E 

others 

Logn (pr and log) 

Rlogn/pr 

E 

Logn (pr and log) 

Rlogn/pr 

others 
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Figure 8. Domain B, ‘over all strata’ model group. The estimated total of the study 
variable against the estimated total of the auxiliary variable. Loess curves indicate the 
conditional bias, with one curve per estimator. They are from top to bottom, Log/pr and 
log (almost indistinguishable), RLogn/pr (dashed), and all other estimators tightly 
together in one group. The dots represent the outcome for 1000 simulated Reg/1.0 
estimates. 
 
In principle, the conditional bias for the other domains, conditional on πxt̂ , showed the same 

pattern, although there was one conspicuous feature in MIDSS domain B and Capex domain 
V: the scatter of points are almost entirely separable into two clusters. See Figure 8 for 
domain B. If a sample contains the high-leverage point in sizeband 3 visible in Figure 3, the 
estimate belongs to the cluster towards the lower-right corner in Figure 8, otherwise it belongs 
to the other cluster. Furthermore, as can be deduced from Figure 8, the sampling distribution 
of the estimated study variable total is bimodal. This explains the very poor coverage 
probabilities in Table 8. 
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5 Discussion 

The GREG is a very flexible and powerful estimator that has enjoyed increasing popularity, in 
particular since the publication of the book Särndal, Swensson, and Wretman (1992). Yet 
there are some downsides with the GREG. These are mainly associated with the variability of 
the g-weights. 
 
A simulation study of estimation in business surveys was conducted, in which some forms of 
the GREG were contrasted with a local regression estimator and a robust regression estimator.  
Each estimator was evaluated with three types of model grouping, where relevant, against five 
criteria. Three of the criteria were conventional (bias, variance and coverage probability), 
whereas the other two measured aspects of the absolute error: the proportion of the estimates 
that were close to the true value and the proportion that where very far from the true value.  
 
Some general conclusions are: 
1. There is no estimator that is the best. It all depends on the use of the estimates and on the 

population. Different criteria will be more important for different uses. The users, 
however, should not decide what estimators are being used. The users may change but the 
national statistical institute cannot afford to flit.  

2. The estimators that have the best unconditional properties across all populations are the 
expansion estimator, Reg/1.0 fitted across all strata and the Local regression estimators.  
In particular, there seems to be no reason to prefer the ratio estimator to Reg/1.0.  

3. The standard way of constructing confidence intervals (1.96 times the standard error, 
estimated with formulas such as those in Sec 3.2.4) often gives poor coverage. If the main 
aim is good confidence intervals then the expansion estimator is preferable, although the 
price to pay will be wide intervals.  

4. For design-based estimators, fitting models within strata (leading to estimators such as the 
separate ratio or regression estimator) tends to give small CVs, but fitting models across 
strata tends to make estimates more robust. 

 
Other conclusions that concern specific estimators are: 
i. The choice of nearest neighbour bandwidth for local regression estimators does not seem 

overly sensitive.  
ii. The robust regression estimator and one of the local regression estimators are superior if 

the aim is to minimise the proportion of estimates that are very far from the true value in 
absolute terms. This is particularly important in official statistics. These estimators have 
reasonably small conditional bias, although GREGs fitted within strata have smaller 
conditional bias. 

iii. The model-based mixture model estimator is bias prone and will give poor estimates for 
some populations. Robust estimation of the variance parameter seems to be an approach 
that reduces some of the problems. Robust estimation of the slope parameter on the 
logarithmic scale is an option left for future research. Also, if the model is fitted across 
strata, including the completely enumerated stratum, the parameter estimation tends to be 
more reliable. However, like the robust regression estimators, this estimator is not linear, 
nor has it the internal consistency property. 

iv. The regression estimator that is associated with the best model (with variance about the 
regression line proportional to the auxiliary raised to 1.5) is more erratic than the 
regression estimator modelled on a variance proportional to the auxiliary. The reason was 
seen to be variance in the bias adjustment term, i.e., the second term in ( 2 ) and ( 5 ). This 
term is non-zero only for the former estimator.  

High leverage points need to be addressed. Some other research of the author includes a pre-
sample diagnostic, which will assign a value to all units in the sample. For units with 
particularly large value of the diagnostic, action can be taken before the sample is drawn. 
They can, for example be moved to a CE stratum, or, if misclassification is the reason why 
they appear in a stratum where the auxiliary variable values are in general smaller, they can be 
re-classified and moved to the stratum where they rightly belong. 
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Appendix. Simulation results, boxplots  
 
Figures A.1 and A.2 show box plots for the point estimates for the MIDSS domains A-C and 
the CAPEX domains U and V. The estimator RobReg is denoted by R/f40. The scale of the y-
axis is the same for the figures in the same panel, but it will not be the same between panels. 
The design-unbiased estimators produce, as they should, estimates with the arithmetic average 
(a star) on or near the true total. Dot plots are added to the box plots for MIDSS domain B to 
highlight the bimodal distribution of the point estimates for this domain. The box plots 
indicate that the estimators fall into three groups: Lognorms, the HT and the others. 
 
 

 
a) MIDSS, domain A. 
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b) MIDSS, domain B. Lognorm ‘within strata’ have been taken out not to swamp the 
other box plots. The top set of 3 graphs shows box plots, the bottom set jittered dot plots 
 
 
 

 
c) MIDSS, domain C. 
 
 
Figure A.1. Box plots of point estimates for MIDSS domains A-C. The averages of the 
estimates are marked with a star. The horizontal dotted lines show the true total of the 
populations. The scale of the y-axes is the same for all three graphs within a panel. 
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a) CAPEX, domain U. 
 

 
b) CAPEX, domain V. 
 
 
Figure A.2. Box plots of point estimates for CAPEX domains U and V. The averages of 
the estimates are marked with a star. The horizontal dotted lines show the true total of 
the populations. The scale of the y-axes is the same for all three graphs within a panel. 
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