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SUMMARY: 

Fairly often a high response rate in a survey is thought to indicate that 
nonresponse errors are of negligable size. It is then consistent to believe that 
steps taken to reduce the nonresponse rate will always reduce the mean 
square error of an estimator. The present report demonstrates that this is not 
the case, and stresses the necessity that strategies intended to reduce nonre­
sponse must be checked with regard to measurement errors as well. 
Response errors are apt to appear when a respondent is under some pressure 
to provide an answer. The pressure may consist in a legal obligation to 
answer, the persuasive power of an interviewer or in just lack of time or 
interest. It is important to have an idea about the size and distribution of 
response errors and their interaction with response probabilities in order to 
protect the quality of the completed survey and use available resources in an 
efficient way. 

Lindström and Lundström (1974) studied nonresponse errors by using a 
response probabilities concept to find out how much the distribution of the 
nonrespondents would influence the expectation and standard error of the 
unweighted sample average when the sample was a simple random sample (s 
r s) from a continuous distribution. They studied a case where each unit was 
attributed a response probability, which was a function of its value. The bias 
of the estimator was studied for several types of distributions and at varying 
levels and distributions of nonresponse. The nonresponse bias fluctuated 
greatly depending on the variation in response probabilities even when the 
nonresponse rate was fixed. They also could point out conditions when the 
nonresponse bias increased although the nonresponse rate dropped. 

The present report proceeds along the same lines but includes models to 
evaluate effects of both nonresponse bias and response errors, allowing the 
response errors to have both random and nonrandom components. Chapter 2 
summarizes and extends the results of the 1974 report. Chapters 3 - 5 add 
response errors to the model. The proposed models permits us to analyze the 
influence on the Mean Square Error (MSE) of both the distribution of the 
respondents and of the response errors that in some way depend on the 
actions taken to reduce the nonresponse rate. 

Although the error functions of this study are modeled with the intention 
to be realistic approximations with some empirical support, the approach at 
this stage is mainly theoretical. The models, and still more the calculations, 
have been used to point out cases where an unweighted estimator is 
sensitive to nonresponse errors and changes in the measurement proce­
dure and cases where it is robust. As there is very little evidence to 
indicate reasonable values of response errors, empirical studies are needed to 
quantify the size of the errors involved, before the ideas can be applied to 
the development of strategies for nonresponse follow-up and data collection 
that will result in a more efficient use of resources in surveys. 



1 THE EMPIRICAL BACKGROUND 

1.1 PRACTICES TO REDUCE NONRESPONSE 

A low nonresponse rate in a survey is often thought to guarantee small 
nonresponse bias of the estimators - although this obviously is not always 
true - and in practically all surveys, procedures are instituted to reduce the 
nonresponse rate to a minimum. 

The design of such procedures is normally a basic and integrated part of 
the planning work. However, there are cases where the nonresponse mounts 
to unforeseen levels, and where supplementary efforts have to be introduced 
during the data collection period. For such cases it might be useful to distin­
guish between the planned design and the realized design when the out­
come of a survey is described in terms of the distribution of the sample on 
respondent groups and the combination of data collection techniques used. 

Procedures used to persuade up to then nonrespondents include renewed 
and intensified attempts to contact them. Some different actions are re­
minders by mail or telephone, call-backs with intensified persuasion, use of 
specially skilled interviewers, use of incentives, use of data collection 
methods adapted to the nonresponse-prone group, and prolonged data collec­
tion period. Experienced researchers knew well that additional efforts and 
the adaption of the data collection method to special groups of the sample 
can increase the response rate substantially. But the choice of follow-up 
method can influence the distribution of the new respondents as well as their 
consent or capacity to give correct answers. There may be a continuous in­
crease of the efforts to reduce nonresponse but it is difficult to observe it. In 
practice one will rather observe a stepwise procedure as attempts to reduce 
the nonresponse rate are planned centrally and designed to take place 
uniformly. 

Sometimes it is possible to distinguish between groups of respondents in 
a survey by the type of efforts and measures chosen or by the time needed 
to make them respond. When such groups can be distinguished, we will refer 
to them as response waves of the sample. In that way we will avoid con­
fusion with the classification of the respondents by explanatory variables or 
with poststrata formed in order to improve the estimators by weighting. In 
many cases it is possible to identify the response waves by the number of 
attempts made to turn sampled units into respondents. 

A well known procedure to increase the response rate is to draw a 
random subsample among the nonrespondents. If the data collection is well 
monitored, this can be a very useful device. There are only a few cases 
reported, however, where the follow-up efforts are focused on groups that 
are expected to contribute extensively to the nonresponse bias. Sometimes 
the efforts are instead directed towards groups which are thought to be easy 
to find and persuade to cooperate. If the nonresponse follow-up is not 
carefully monitored, an increase of the response rate might at worst make 
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the distribution of respondents even more skew and increase the bias. 
Several examples of the importance of good interviewer training and moni­
toring are given by Lievesley (1988?). 

1.2 PURE NONRESPONSE EFFECTS 

As nonresponse reduces the sample size, there will be an increase of the 
sampling error even if there is nothing systematic in the distribution of 
nonrespondents. When the nonresponse is systematic its distribution has an 
influence on both the bias and the variance of the estimator. 

It is not difficult to find empirical reasons to analyze the distribution of 
the respondents and consider its significance. Those who did not respond 
early may have thought that the survey did not concern them because their 
activity, interest or knowledge in the studied field was in some way 
restricted. Several studies have demonstrated that the response waves often 
have different averages in the survey variables, and that the proneness of a 
group to cooperate and its average are correlated. Such studies have mostly 
been done on mail surveys, where it is easy to classify the respondents by 
response waves, e.g. by those who answered immediately, those who 
answered after each mailed reminder, and those who answered only in a 
telephone interview. 

A couple of examples will be enough to demonstrate that nonresponse 
follow-up is important for reducing the bias. All researchers on survey 
methods can provide similar examples from their own experience. 

Table 1 presents a well known example of this type given by Cochran 
(1963). The respondents in a mail survey of fruit growers were broken down 
by response wave. The average number of fruit trees was calculated for each 
wave. 

Table 1 AVERAGE BY RESPONSE WAVE 
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K-E Kristiansson (1986) found in the Swedish Survey on Living Condi­
tions that it was about 7 times as usual to receive social security benefits 
among the not-at-home's (22.9 %) as among the respondents (3.2%). There 
was no difference in this respect between the respondents and the other 
categories of nonrespondents. The benefit sum given to each social security 
receiver was about 50 per cent higher in the not-at-home group than in the 
rest of the sample. To allocate the resources to a bias-reducing nonresponse 
follow-up was obviously an important matter in that survey. 

1.3 RESPONSE ERRORS IN DIFFERENT RESPONSE WAVES 

Usually one has to be prepared to find response errors already in the 
answers of the most cooperative respondents. When the data collection 
continues among those who were not so easy to contact and those who 
needed more persuasion there are two other sources of response errors that 
can make their influence felt. 

The first of them can appear even when the same data collection method 
is used in all the attempts. If the tentative nonrespondents are turned into re­
luctant respondents during the second or later attempt, there is a risk that 
their answers will be biased and that the response variance will increase. If 
worst comes to worst, extreme efforts to reduce the nonresponse rate may 
even increase the MSE by introducing a large bias. Very little is known 
about the size of this effect. Statistical practitioners are commonly aware of 
this, but solutions are rarely offered, nor the effects estimated. Groves (1989) 
presents this problem in more detail and Leslie insisted already in 1972 that 
high response rates are not always necessary for good estimates. 

The other source of response error appears when the statistician after the 
opening attempt(s) tries to make the nonrespondents participate by changing 
the data collection method. There is always the risk that a different response 
behaviour will be introduced in the later response waves, if the same data 
collection method is not used as in the first. Several studies clearly demon­
strate that the choice of measurement method has a substantial impact on the 
results, especially when it comes to sensitive information. The choice of data 
collection method, the presence or not of an interviewer, and the time avai­
lable can influence how the respondents formulate their answers. Postal 
surveys tend to give higher percentages than interview surveys when indivi­
duals are asked about their drinking and smoking habits, diary surveys and 
interview surveys give different estimates of household expenditure, etc. 

The two sources of response errors probably interact. They can both be 
included in the error models presented later in this report. 

There is an abundance of studies that compare measurement methods in 
independent surveys. The occurrence of differences in estimated results due 
to the choice of measurement method is so well established, that it is enough 
to give one example. In a Swedish experiment, Bergman, Häll and Lind-
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ström (1980) compared telephone and at-home interviews. For many vari­
ables there were no differences between the two independent surveys, but 
some significant differences were also found. Some of them are reported in 
table 2. Similar examples are given by Groves (1989). 

Table 2 FINDINGS BY DIFFERENT MEASUREMENT 
METHODS. PERCENTAGE DIFFERENCE 

However, like other similar experiments this study does not entirely 
reflect the stated problem, as it compares the estimates of two independent 
samples. But it warns that something similar well might happen when 
different data collection methods are chosen for different response waves. 
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2 A MODEL FOR RESPONSE PROBABILITIES 

2.1 DESIGN AND ESTIMATOR 

In a population consisting of the units Ui5 (i = 1,2 ... N) a simple random 
sample (srs) of n units is drawn with replacement (wr). The population 
average in the variable X is estimated with the unweighted average among 
the nr respondents: 

(2.1.1) 

Another way to write this estimator which better reflects the sampling and 
response model is 

(2.1.2) 

R; and I; are indicator variables. L = 1 if U; is included in the sample, 
otherwise it is 0. R; takes on the value 1 when Uj is included in the sample 
and responds, otherwise the value is 0. The probability to respond given Uj 
is denoted P(Rj=l |Uj). If there is no nonresponse or if all P(Ri=l |Uj) are 
equal, the unweighted sample average (2.1.1) is an unbiased estimator of 
the population average. 

When all P(Rj=l |Uj) are not equal, the unweighted sample average 
(2.1.1) may be biased. For obvious reasons, empirical studies of nonresponse 
bias are very scarce. Some Swedish studies reviewed and reported by 
Lindström (1983) give anyhow some idea of its size in different surveys. 
However, these findings pertain only to a restricted number of variables and 
domains of study. 

If the different response probabilities are known, one can adjust the 
estimator and eliminate the nonresponse bias. According to Särndahl and 
Swensson (1985), an unbiased estimate of the population mean can be ob­
tained by use of an expanded Horvitz-Thompson estimator. Conversion of 
additional nonrespondents into respondents is not needed to reduce the bias. 
Additional response waves of sampling units merely tend to reduce the 
standard error. 
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2.2 MODELLING RESPONSE FUNCTIONS 

As response probabilities rarely can be directly evaluated, it is important 
to use whatever possibilities there are, to find out something about the size 
of the nonresponse errors. By modelling and simulation we can arrive at a 
conception of the size of the errors we risk when we use a specific estimator 
and establish plausible values or at least limits for nonresponse errors in real 
surveys. 

If the response probabilities in some way depend on X, and if P(Ri=l |Uj) 
can be specified as a function of X - P(Ri=l |Xj) - then the response 
probabilities will be easier to model. It is still easier if the individual re­
sponse probabilities can be approximated with a continuous response proba­
bility function p(r j x). 

The cases that demand special attention are those where the response 
probability function is monotone. Monotone and among them linear response 
probability functions can induce important nonresponse bias. As linear 
functions often approximate other monotone functions fairly well within an 
interval, one can get a good idea of when the distribution of the nonresponse 
threatens the accuracy of the estimator, by concentrating on linear functions 
in the rest of this study. They have also the advantage that they permit fairly 
simple analytic solutions for bias and variances. 

There are several empirical examples on response frequency distributions 
to support the idea that there are not so few cases where the application of 
monotone response probability functions would be relevant. Two are pres­
ented below: 

Table 3 shows some results from the 1968 Swedish Family Expenditure 
Survey. Household size was established for all the sampled units and 
response rates were calculated for the households by number of members. It 
is not very surprising to find that the response rates rise by household size. 
The more household members, the greater the possibility to find someone at 
home. 

Table 3 RESPONSE RATE BY HOUSEHOLD SIZE 
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In table 4 the nonresponse rates go up together with income class. The 
example originates from the American National Bureau of Economic 
Research and is reported by Dalenius (undated reprint of an early report). 
Compared to Swedish experiences, the difference in response rate between 
the extreme classes is very great. 

Table 4 NONRESPONSE RATE BY INCOME 

Nonmonotone response probability functions p(r | x) should of course not 
be totally disregarded. Those which are symmetric around the centre of the 
interval on which X is defined tend to induce only minor nonresponse bias 
but may have an influence on the variance. Those which are independent of 
the values of the observations will only reduce the sample size and make it a 
random variable. 

2.3 ONE WAVE OF RESPONDENTS - BIAS, VARIANCE AND MEAN 
SQUARE ERROR 

To study the approximate behaviour of the estimator (2.1.1) in the 
presence of linear response functions, we make a number of assumptions: 

* The distribution of the variable X can be approximated by a continuous 
frequency function, f(x), 

* f(x) is defined on the finite and closed interval (0, K) 
* The average is u, the variance o2 and the third central moment is u3. 
* The response probability depends on X and can be approximated with a 

continuous response function p(r | x). 
* Each unit is drawn and responds independently of all other units. 

Lindström and Lundström (1974) have shown that when the response 
probability function is linear, i.e. when p(r|x) = a + bx, on a restricted 
interval (0, K), the expected response rate P is 

(2.3.1) 

8 



Håkan L Lindström 
U/STM 

and as soon as P ^ = 0) can be neglected, the expectation of the unweighted 
sample average for the respondents is 

(2.3.2) 

All integrals in this report are evaluated on the interval (0, K) which is 
not pointed out in every single case. When p(r|x) = a + bx is specified for a 
calculation one must check the values of a and b. In model (2.3.1), a can 
only take on a value between 0 and 1, and ||b|| must not exceed 1/K. b is 
also restricted by the value that a and P takes on as 0 < p(r|x) < 1 in the 
interval (0,K). The limits of b are: 

(2.3.3) 

The calculations can be standardized for a couple of interesting distribu­
tion types if we define D as the difference in response probability between 
the extreme X-values and express b as 

(2.3.4) 

To terms of the order n"1, the average variance is approximated by: 

(2.3.5) 

When the nonresponse bias B(xr) = bc^/P is denoted B the mean square 
error of x, is: 

(2.3.6) 

When b = 0 there is no bias and the group of respondents can be looked 
upon as a random subsample of the total sample. When ||b|| increases but P 
is fixed, ||B|| increases as well. So will MSEfX^J do in most cases of 
practical importance. If b is not very small, B2 will soon dominate (2.3.6) 
when n increases. 
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The aim of the 1974 study was to find out how much the level and 
distribution of nonresponse made MSEfx^] exceed 0"2/n - the variance of 
the unbiased estimator when there is no nonresponse. As formula (2.3.6) for 
the MSE is somewhat complex, numerical calculations under varied condi­
tions were useful to illustrate its implications. 

It is convenient to write 

For the comparison of different realized designs, it will be useful to 
introduce a standardized measure. Here we use the square root of the ratio 

(2.3.7) 

and term it the NONRESPONSE EFFECT (NRE) in analogy with the 
concept design effect. Partitioning (NRE)2 as in (2.3.7) demonstrates three 
different effects of nonresponse: 

a the nonresponse bias depending on the distribution of the nonresponse. na 
will soon come to dominate NRE when n increases. 

P the reduction of the sample size from n to nP 

T the impact on the size of the unit variance 

The NRE is quickly dominated by na of formula (2.3.7) which mainly de­
pends on n and b. Even small increases in ||b|| will lead to an increase in 
NRE as well. The principal strategy to follow up nonresponse must then be 
to make b as close to zero as possible as also T of (2.3.7) is close to zero 
when b is. 
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2.4 SPECIAL DISTRIBUTIONS - ONE WAVE OF RESPONDENTS 

When {NRE[x„p|r]}
2 = MSEtx^J/VarlXI is calculated for the rectangu­

lar and triangular distribution types the results can be nicely condensed as 
this ratio is independent of K. 

For the rectangular distribution: 

Substitution in (2.3.7) and rearrangement of the formula gives 

(2.4.1) 

For the triangular distribution: 

the same operations result in : 

(2.4.2) 

For both the rectangular and the triangular distribution, the NRE turns out 
to be independent of both the position and the length of the interval on 
which X is defined. This makes the results useful for a larger class of 
distributions. 

Different types of results have been calculated to demonstrate the effects 
of varying n and the parameters a and b of the linear response probability 
function. Calculations have only been made for reasonable values of D and 
P in order to restrict the number of table and diagrams. The average re­
sponse rate, P, is kept in the interval 0.65 - 0.95. The differences in response 
rate between the extreme groups of a sample are allowed to differ with at 
most 30 per cent, 

which might be a little more than necessary as differences larger than 20 per 
cent rarely appear in practical work. 
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The calculations presented in this report are: 

* The nonresponse effect according to (2.4.1) and (2.4.2) and its compo­
nents have been calculated for varying D and fixed values of n and P (n 
= 100 and P = 0.80). The results are presented in tables 5 and 6. 

* The effect on NRE of letting n increase when P is fixed and D varies is 
shown in pictures 1 and 2 for n = 100, 400, 1000. 

* The size of the bias when a and P varies but D is fixed (D = -0.20) is 
given in table 7. 

* The sample size, n, where the 95 per cent confidence statement is viol­
ated when D varies and n and P are fixed (n = 100, P = 0.80) is given in 
table 8. 

Table 5 NONRESPONSE EFFECT FOR THE TRIANGULAR 
DISTRIBUTION WHEN n=100 and P = 0.80. 

Table 5, as will table 6, shows that na, the nonresponse bias component, 
varies markedly even at a fixed response level, while the variance compo­
nent (3(1+r) varies much less. Even for the small sample size n = 100, na is 
almost as large as P(l+T) for the extreme values of D in tables 5 and 6. 
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Table 6 NONRESPONSE EFFECT FOR THE RECTANGULAR 
DISTRIBUTION WHEN n=100 and P = 0.80. 

The results shown in tables 5 and 6 represent conditions that might 
appear in many fairly well-conducted studies. When response rates are 
lower, as assumed in the calculations of table 7 the NRE can be much 
larger. Given the slope, D/K, the bias component noc will increase in import­
ance with decreasing P-level and decrease with increasing P-level. 

Compared to factor (3, factor T had a very small impact on the size of 
the variance component of (NRE)2 for all studied levels of D. The deviations 
of P( l+0 from p varied between -0.08 and 0.06 for the triangular distri­
bution and were almost negligable for the rectangular distribution. 

It is obvious from the formulas that very soon not - the squared nonre-
sponse bias factor - will dominate NRE, when n increases and ||D|| deviates 
from 0. How fast this happens is shown in pictures 1 and 2, where NRE has 
been calculated for the sample sizes 100, 400, and 1000 for both types of 
distributions at the same P level. All types of comparisons found in this 
report demonstrate the rectangular distribution to be more sensitive to the 
effects of linear response probability than the triangular. A distribution 
concentrated around the average will tend to be more robust than a more 
widely spread distribution. 
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Picture 1 NONRESPONSE EFFECT FOR DIFFERENT SAMPLE 
SIZES - TRIANGULAR DISTRIBUTION, P = 0.80 

Picture 2 NONRESPONSE EFFECT FOR DIFFERENT SAMPLE 
SIZES - RECTANGULAR DISTRIBUTION, P = 0.80 
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How fast NRE increases when a decreases is shown in table 7 and picture 
3. It is also seen in the formulas (2.4.1-2). The lower the response rate, the 
more important is it that the respondent group is as similar to a simple 
random sample as possible in order to avoid large NRE. 

Table 7 NRE WHEN a (and P) VARIES FOR CONSTANT D = - 0,2 

Picture 3 NRE WHEN a (and P) VARIES FOR CONSTANT D = - 0,2 
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There are several ways to express the consequences of systematic non-
response bias. A common rule requires that the bias must not exceed 20 per 
cent of the standard error. If this condition is fulfilled, the confidence level 
is only slightly reduced - at most to 94.5 per cent. By application of formula 
(2.3.7) one can calculate the critical sample size that makes the relative size 
of a certain bias too large for the 95 per cent confidence level to be valid 
any more. The condition is: 

(2.4.3) 

The values of nP for which condition (2.4.3) are violated are reported in 
table 8 for the distributions under study. 

Table 8 CRITICAL SAMPLE SIZES nP WHEN B2 > 0.20 or7nP 
AND THE RESPONSE RATE IS P = 0.80. 

Table 8 shows that even a weak correlation between response probabilities 
and the variable values will reduce the intended 95 per cent confidence level 
for small sample sizes when confidence intervals are calculated without 
regard for the nonresponse bias. 
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The main interest of this study is focused on the NRE, but the non-
response bias should not be completely overlooked. The relative nonresponse 
bias: 

RB[xJ = BfxJ/p is easily calculated. For 0 < X < K it is 

* D/6P for the uniform distribution and 
* D/5P for the triangular one. 

In many surveys the response rate turns out to be 0.65 < P < 0.85 or 
higher. Where observations on response rates were made, the relation ||D|| < 
0.20 (or at most 0.30) was usually fulfilled. Then the ratio |D||/P will take 
on values smaller than 1/2, and not even a very skew distribution of the non-
response will make an estimator hopelessly biased. The relative nonresponse 
bias, RB, remains of limited size. For the triangular and rectangular distribu­
tions the limit for ||RB|| will be approximately 0.1 under these conditions. 

2.5 TWO OR MORE RESPONSE WAVES - RESPONSE 
PROBABILITIES 

The response probabilities of response wave no j are denoted: 

(2.5.1) 

p,(r|x) is the probability to be in the first response wave, which consists 
of those who provide answers in the first data collection attempt, without 
any reminder. p2(r|x) is the probability to be in the second response wave, 
which implies an answer in the first extra effort, etc. j can take on the values 
l,2,..r where r indicates the last response wave. There is also a probability 
pj=nr(r|x) to remain nonrespondent after all the attempts of the data collec­
tion agency. 

Pj is the expected relative size of response wave j ; (2.5.2) 

Pj<,. is the expected relative size of the response waves 1 to r 
together. (2.5.3) 

Wj = Pj /Pjsr is the expected relative size of response wave j (2.5.4) 
in the group of all respondents. 

Summing over respondents and non-respondents one gets: 
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In the linear case the response probability function for response wave 1 is: 

(2.5.5) 

The increase in total response probability if attempt number j is made is 

(2.5.6) 

It will be easier to write 

(2.5.7) 

The total probability to respond in wave r or before is 

(2.5.8) 

2.6 TWO OR MORE RESPONSE WAVES - EXPECTATION AND BIAS 

The principles followed to index the probabilities of separate and cumu­
lated waves are also applied on averages. 

The expected average of response wave j then proves to be : 

(2.6.1) 

The model permits averages in the response waves to be different. If the 
wave j ( j = 1,2 ..r) of respondents is of the relative size Pj, the average of 
the observations up to wave j will be 

(2.6.2) 

From here on summation is from 1 to r, if not otherwise denoted. 
Combining (2.6.1) and (2.6.2) and taking expectation gives 

(2.6.3) 

which of course is the same as if there was one response wave with the 
response probability function a, + bpc. If the final group of nonrespondents 
could be included as well when the average would be estimated without 
bias, E[xjSnr] = u, because a^ = 1 and bOT = 0 and (2.6.4) 

It is easy to calculate the conditions when an attempt to increase the re­
sponse rate also reduces the bias. When the response rate goes up from P1 to 
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P2 and at the same time the slope changes to b2 from b1; there is only a re­
duction of the nonresponse bias when 

(2.6.5) 

Formula (2.6.5) says that the nonresponse bias is reduced only when the 
proportional increase of the response rate is larger then the proportional 
increase of the slope of the response function. For example, if P1 = 0.6 and 
bj = 0.10, an increase of the response rate with 0.15 to P2 = 0.75 will lead to 
an increased positive bias when b2 > 0.10 0.75/0.60 = 0.125 

Picture 4 gives the ratio b/P for - 0.30 < b < 0.30 with one curve for each 
of P = 0.70, 0.80 and 0,90. From the diagram we can see when an increase 
in response rate from Pj to P2 also reduces the nonresponse bias and when it 
does not. This happens in interval where the curve for a higher response rate 
is above the curve for a lower response rate. 

Picture 4 NRE FOR THE RECTANGULAR DISTRIBUTION WHEN n = 
100 and D VARIES 

When P = 0.90 ||a|| can not take on values higher than 0.20. 
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3 SIMULTANEOUS RESPONSE AND NONRESPONSE ERRORS. 

The realized survey design that is modelled here is in outline: 

There exists a "preferred" data collection procedure that is well imple­
mented and in good control. For all practical purposes, the ideal would be to 
measure the variable X in this way for the whole sample, but this procedure 
can only be carried out among the sampled units that constitute the first 
response wave. 

When the next data collection attempt is made, the attitude to the survey 
among those who will make up the second response wave may differ from 
that of those who constituted the first wave. One may also have to modify or 
or change the data collection method which also may generate measurement 
errors. The observed variable Y deviates from the ideal variable X syste­
matically, randomly or in both ways. In particular, we might expect a syste­
matic effect when the respondents for some reason or other are reluctant to 
answer. A proportional or random effect might be more likely if they are 
pressed for time or uninterested and prone to give quick but uncommitted 
and approximate answers. 

The model disregards some complications in order to make the results 
more perspicuous. The model can certainly be elaborated in several ways 
with regard to sampling design, relaxation of the conditions of independence, 
follow up strategy, use of supplementary information in the estimation and 
nonresponse compensation. For instance, in many cases a random subsample 
of the nonrespondents from the first attempt is selected for the second 
attempt. This is frequently the case when the second attempt is more expens­
ive than the first. We avoid such complications by including all the nonre­
spondents of the first attempt in the second and following attempt. An 
elaboration is meaningful and useful mainly in the context of a specific 
survey that can provide empirical information on the distribution of the er­
rors. 

4 A DETERMINISTIC MODEL 

4.1 GENERAL ASSUMPTIONS 

As a start, let us look at a simple but flexible model for the new variable 
(4.1.1) 

where £j is a constant systematic error and 
8j a proportional measurement effect 
The observations are independent of each other 

Given X and the response wave this model for the measurement process 
generates a deterministic response error. There are some situations where 
this is not a totally unrealistic approximation. For example, all respondents 
in wave j , might prefer to exaggerate their income in order to impress the 
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interviewers. In that case £j > O and 8j > 1. If the question was asked by a 
tax collector one would not be surprised if both 8j < 1 and £j < 0. 

This deterministic model will serve as a first approach to calculate ana­
lytic results and gain some understanding of the process. The relative 
simplicity of the model permits us to sort the different effects and to get at 
least some idea of their size and interaction before studying more flexible 
models by means of simulations. 

4.2 EXPECTATION AND BIAS 

As x, = yx, the unweighted estimate of the observations 

(4.2.1) 

will have the approximate expectation 

(4.2.2) 

In the case of linear response probability functions the denominator of Efy^] 

(4.2.3) 

(4.2.4) 

so the expected average is approximately 

(4.2.5) 
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The bias of (4.2.1) is approximately 

(4.2.6) 

The rearrangement in formula (4.2.6) illustrates that the total bias under 
the linear models is a sum of three additive components which in turn 
express: 

A the weighted average of systematic errors - the constant response 
bias 

B the weighted proportional response bias 
C the nonresponse bias in all the waves together. 

We can expect that in most cases |j u || > ||Bj||, and (8j-l)||(u + Bj)|| can 
then be expected to have the same sign as (5j-l). A and C can both take on 
negative or positive values. The effects of the three components can obvi­
ously reinforce each other but also counteract or even eliminate each other. 

4.3 THE VARIANCE AND MSE 

The variance of the unweighted estimator (4.2.1) conditioned,on the 
expected distribution of respondents {E(nr)} = {nPj} is 

(4.3.1) 

The unit variance, Oj2, in wave j in case of linear response and error func­
tions is: 

22 



Håkan L Lindström 
U/STM 

(4.3.2) 

Combining formulas (4.3.1) and (4.3.2) gives 

(4.3.3) 

To make it easier to identify the effect of added measurement errors, we 
can also after some formula manipulation write the variance: 

(4.3.4) 

VarfXnpiJ in (4.3.4) is the same variance as in (2.3.5) if the r response 
waves are regarded as one wave only. 

The Mean Square Error is: 

(4.3.5) 

The square root of the ratio MSE[yjÊr| {nPj}]/Var(x) will be referred to as 
the Nonresponse and Measurement Error Effect (NRME) in this report. 

As we cannot be sure that the NRME will decrease when more sampling 
units become respondents, it is important to find out at what stage of the 
data collection procedure we reach the minimum of 

(4.3.6) 

or at least if there is a response wave after which it is little use to make 
more attempts. There are also time lost and extra costs to consider. 
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4.4 TWO RESPONSE WAVES 

In an attempt to make it easier to see how each of the error sources influ­
ences bias (4.2.6) and the MSE (4.3.5), one can look at the case with just 
two response waves and no response errors in wave 1. When r = 2, bdl = b,, 
£j = 0 and 5i = 1 the bias is by application of (4.2.6) 

(4.4.1) 

A the weighted response bias in wave two 
B the weighted proportional response variation in wave two 
C the nonresponse bias in the two waves together. 

In some cases the result is simplified. When ô2=l or if P2/bd2 = o /̂u the 
bias will be W2e2 + BPj^. When ^ and b2 have the same sign the errors 
will cumulate, if not there is a tendency for the measurement bias to cancel 
the nonresponse bias. When 52=1 and £2 = 0 (4.4.1) is reduced to the total 
nonresponse bias after the two response waves. 

The between-variance component is in the case of two response waves 

(4.4.2) 

The variance for the unweighted average of the observations is 

(4.4.3) 

By dividing the mean square error with the variance for a sample without 
nonresponse we get the squared nonresponse and measurement error effect. 
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Not even in this very simplified case was it possible to rewrite the 
formula so far that the results can be easily expressed in tables and dia­
grams. 

5 SIMULATION RESULTS 

Although the model presented in chapter 4 gave some information on the 
effects of response and nonresponse errors, it is not sufficiently realistic for 
most applications. In applied studies, the modelling must be flexible enough 
to conform to the empirical results. Among other things, it must include the 
possibility of random response errors. 

In order to study a few selected situations, some SAS simulations on PC 
have been made. The conditions were formulated to approach realistic and 
not unusual situations. The results should be regarded as a first step in an 
analysis of the sensitivity of the estimator (4.2.1) to both nonresponse and 
response errors. 

The conditions for the simulations are: 

1 There are two response waves, both with linear response functions. 
2 The observations are mutually independent. 
3 There are no response errors in the first response wave. 
4 In the second response wave, Y2 = X + e^ e2 is normally distributed with 

pE =j£J3-u2)X and oe = v2X. e^ expresses the measurement errors in the 
observations among the respondents during wave two. The errors may 
depend on X. However, Y2 is not permitted to take values outside the 
interval (0, K). When Y2 < 0, then 0 is substituted, and when Y2 > K, 
then K is substituted. 

5 The variable X has a rectangular distribution. (The triangular distribution 
tended to be less sensitive, at least to nonresponse errors. 

For all the simulations, the sample size is n = 100 . The number of 
replications is m = 1000 which seems large enough to give an understanding 
of the behaviour of the estimator (4.2.1). This number of repetitions may, 
however, not be large enough for precise information on a particular design. 

In each replication, s = 1 ... 1000, of the sample the unweighted average 
(4.2.1) and NRMEfy^) was estimated together with the bias component of 
NRME(yj<2) for the combined first and second response wave. The same 
estimation was made for the first response wave separately. These results 
were in good agreement of the theoretical results of section 2.3. 
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The estimators of the bias and of ((NRMEs(yj£2))
2 in replikation no s (s = 

1. 2. ...1000) are: 

(5.2) 

The estimators of the average over all the 1000 replications are 

(5.3) 

(5.4) 

Standard errors of the estimators (5.3) and (5.4) were calculated. They 
were very small and varied but little around 0.003. 

In the simulations the sample size of each response wave is a random 
variable which contributes to the variance. NRME(y) includes the random 
variation in the size of the response waves and differs in that respect from 
the theoretical MSEs of sections 3 and 4 which were conditioned on the 
expected sample size. 

The situations illustrated by the simulation are : 

In the first response wave Pt = 0,65, bj = 0.10 and at = 0.60. 

In the second attempt the response rate is increased to P2 = 0.85, so the 
second response wave constitutes 20 per cent of the entire sample. This 
is done in one of three ways: 

i. With reduced slope; b2 = 0.00, a2 = 0.85; 
In this case the differences in response rates are succesfully evened out. 

The nonresponse bias disappears. 

ii. With the same slope; b2 = 0.10, a2 = 0.80; 
Here the increase is same within the entire range of X. The nonresponse 

bias is somewhat reduced. The precision of x is improved but not necessarily 
the precision of y. 

iii. With increased slope; b2 = 0.20, a2 = 0.75; 
The largest reduction in nonresponse rate comes in the groups that 

already are prone to respond. The nonresponse bias will increase. The preci­
sion of x is improved but not necessarily the precision of y. 
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The calculated bias and NRE of wave 1 and 2 when there are no response 
errors are given in table 9 as a basis for the evaluation of the added effect of 
response errors. 

Table 9 CALCULATED NRE at n =100 FOR THE RECTANGULAR 
DISTRIBUTION WHEN P2 = 0,85 and P1 =0.65, u2 = 0, v2 = 0. 

Table 9 gives a new example on the importance to monitor the nonre-
sponse follow up. After the second wave when the response rate P is 85 per 
cent NRE varies between 1.08 and 1.28. In the last case the NRE is only 
slightly below the NRE after the first wave when the response rate was only 
65 per cent. The bias has even grown larger. 

The respondents of the second wave are now thought to produce a 
systematic response error of the size u2X and a random response error which 
is normally distributed around X + u2X and has the standard deviation v2X. 
Table 10 gives some results for selected combinations of u2 and v2. 

The values of u2 and v2 have been chosen somewhat arbitrarily but with 
the intention that they shall be of resonable size. One can easily go on like 
this and study the combination of errors one believes to be relevant in each 
specific application. 

Response errors mainly explain the difference between the values in table 
9 and those in table 10. The change in size of B/K and NRME depends on 
p2(r|X) = a^ + b^x and the distribution of the response error. A minor part 
of the difference may derive from the variation in sample size among the 
replications. 
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Table 9 SIMULATED NRME at n = 100 FOR THE RECTANGULAR 
DISTRIBUTION WHEN P2 = 0,85 and P1 =0.65 
(a1 = 0.60, b1 = 0.10). 

The reported examples indicate cases where combinations of errors result 
in serious increase of bias and NRME as well as combinations that do not. 

* The introduction of a only random response error (u2 = 0, v2 = 0.2) in the 
second response wave (case i) has no visible effect on either on bias or 
on NRME compared to the case of table 9 with only response errors. 

* When a proportional systematic response error (u2 = 0.1, v2 = 0.2) is 
added (case ii) the relative bias is doubled and the NRME becomes so 
large that it exceeds the NRE of the first response wave for b2= 0.1 and 
0.2. 

* In case iii (u2 = -0.1, v2 = 0.2) the proportional response bias is negative. 
Response and nonresponse errors counteract each other. When b2= 0.2 
there seems to be no bias at all but if b2= 0 the NRME is larger than the 
NRE of the first wave. 

28 



Håkan L Lindström 
U/STM 

* If the negative proportional systematic error is allowed to grow still larger 
as in case iv (u2 = - 0.2, v2 = 0.1), the bias returns and the NRME is very 
large and largest when b2 = 0. 

The presence of a proportional systematic response error seems to be 
much larger threat to the accuracy of the estimator than the presence of 
random response error. 

As u/K = 0.50 for the rectangular distribution, the observed deviations 
||B/K||/(u/K) never exceed 10 per cent. (It would of course be easy to make 
them do so by increasing the systematic part of the errors.) The observations 
on the limits of the size of the relative bias are however fully in line with 
the empirical observations reported by Lindström (1983). 
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6 A COST MODEL 

Costs should be allocated in such a way that a minimum NRME is attain­
ed for given cost. A simple model for data collection and data processing in 
a survey is: 

(6.1) 

where 

C0 is a cost independent of the sample size. 
Cj is the per unit contact cost for all sampled units. 
Cj is the added per unit contact cost in attempt j for those who are 

not in the pre-j response waves. 
c'j is the data collection and data processing cost for a unit in re­

sponse wave j . 

The cost per response waves is more obvious and design easier to compare 
if the formula is rearranged to: 

Consider a situation, where one can make a choice between 

Design A: one attempt (estimator x,) with the preliminary sample size n, 
Design B: two attempts (estimator yj^), with two response waves with the 

preliminary sample size m. 

Design A and B are equally expensive when the relation between the sample 
sizes m and n is 

(6.3) 

Usually the per unit cost for both contacting and data collection will 
increase with each attempt and in many cases n is larger than m. Having 
found out what sizes of m and n one can afford, one should then choose the 
design that has the smaller NRME. If also larger response errors threaten to 
appear in later response waves, it is not self-evident that it is a wise decision 
to make every possible attempt to reduce the non-response rate. 

An application of this reasoning could be done on the last few responding 
units in many surveys. It is often very expensive to collect their answers. It 
will also delay the presentation of the results. If the observations are unreli­
able as well, there is no advantage at all in collecting them. 
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