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Summary

A model for studying the effects of nonresponse in competing risks
analysis is proposed. The response probabilities are assumed to
depend on whether, and from what cause, decrement has occurred
during an observation period with right censoring. The model has
been used to study nonresponse effects on estimates of transition
intensities in the 1981 Swedish Fertility Survey. Some empirical
results from that survey are presented to give realistic estimates of

the parameters in the model.

The effects of nonresponse on technical bias, variance, and variance
estimators of occurrence exposure rates (estimated intensities) are
investigated by means of the model. It is shown that the technical
bias (i.e., the bias due to ratio estimation) is often insignificant
compared with the standard error, which in turn can often be
estimated in an approximately unbiased manner by the usual

variance estimator even in the nonresponse situation.

The nonresponse bias of estimates of transition intensities and
transition probabilities is also investigated. It is shown that the
nonresponse bias may be very large if the response probabilities for
decrements and survivors differ greatly. Two methods to adjust for
the nonresponse bias are investigated. Both require accurate
estimates of the ratios between the response probabilities for
decrements and survivors. If this requirement is not met, the

adjustment methods may in fact increase the nonresponse bias.






1. Introduction

Most surveys suffer from nonresponse. This affects estimates not
only by reducing the number of observations and thereby increasing
the random error, but also by introducing bias in the estimates. The
bias arises from the fact that the response behavior often is
associated with the variables under study. The only certain way to
avoid nonresponse bias is to make sure that all sampled units (or
subsampled units from an original nonresponse group) respond. This
is seldom possible in practice due to budget and time constraints,
persistent refusals, etc. The effects of nonresponse and the costs of
reducing it must also be balanced against other sources of error in

a survey. Therefore, some nonresponse must usually be accepted.

Nonresponse effects (and adjustment methods) can sometimes be
studied empirically by comparing estimates based on the responses
obtained with corresponding estimates based on the whole target
sample, provided data are available from an external source. This
has been possible for the 1981 Swedish Fertility Survey, where
information from the Swedish Fertility Register was used to study
nonresponse effects on estimates of transition intensities, transition
probabilities, test statistics, etc (Lyberg, 1983). The register, which
has been described by Johansson and Finnids (1983) and by Quist
(1990), contains information about fertility and nuptiality for all

Swedish women born in 1926-60.

Such empirical studies have limitations, however. Their results
concern specific variables for which there is accurate information

in the register. These variables may not be the most important ones
in the survey, and the results may not be valid for the main

survey variables. Thus, empirical studies should be carried out



within the framework of a theoretical model. Such a model may make
possible inference beyond the empirical findings. A theoretical model
is also a necessary means during the design phase for the effective

allocation of resources.

This paper presents the theoretical model used in the nonresponse
study of the 1981 Swedish Fertility Survey. The model concerns an
event history analysis where the transition behavior can be

described by a competing risks model and the response behavior is

assumed to depend on the outcome of the individual life history.

A competing risks model is a Markov chain with a continuous time
parameter, one transient state (State 0) and some (finite) number K
of absorbing states. (More complex hierarchical Markov chain models
for event history analyses can often be decomposed into a number
of sequential competing risks models. See, for instance, the analyses
performed on the Swedish Fertility Register and the 1981 Swedish
Fertility Survey by Quist and Rennermalm (1985).) The transition

intensities of a competing risks model are defined as

H, (t) = lim Pj (t, t+h) / h , ji=1, 2,..., K,
hlo

where Pj(t,t+h) is the transition probability from State 0 to state j
during the time interval (t,t+h) among individuals who still belong
to State 0 at time t. In this paper we assume that the transition
intensities are constant, i.e., uj(t) = uj for all relevant t, and

i=12,..., K.

Central rates (occurrence/exposure rates) are maximum likelihood
estimators of the constant transition intensities uj. Their asymptotic

properties are well.known, see, e.g., Hoem and Funck Jensen (1982,



Chapter 4.1). Some attention has alsc been paid to their small-
sample properties (Beyer et al., 1976; Vaeth, 1977; and Shou and
Vaeth, 1980). So far almost nothing is known about the effects of
nonresponse on central rates used as estimates of transition

intensities.

In Section 2 I start with a short discussion of different approaches
to model nonresponse and present the model used in this paper.
This model describes how the life-history segments of the
respondents (i.e., the histories actually observed) are generated by
a probabilistic response mechanism. In Section 3 I present some
results from the empirical nonresponse study of the 1981 Swedish
Fertility Survey in order to give an impression of what estimates
are realistic for the response probabilities defined in the theoretical

model.

In Section 4 I return to the theoretical model and investigate the
nonresponse effects on the technical bias, on the variance and on
the usual variance estimator of central rates used as estimators of
transition intensities. In the nonresponse situation, those central
rates may be correlated and the usual variance estimator may be
biased (even asymptotically). Most of the time, however, the
correlation and bias are very small. Nevertheless, I present a
consistent variance-—covariance estimator to be used in cases where
there is any doubt. The technical bias behaves in the same manner
in the nonresponse situation as in the complete response situation,

i.e., it can usually be ignored.

The nonresponse bias is investigated in Section 5. The bias can be
expressed as a function of the ratios between the response
probabilities for the decrements (from a specific cause) and for the
survivors, as defined in the nonresponse model. If these ratios

differ greatly from 1, the nonresponse bias of central rates becomes



very large compared with the estimated transition intensities and
compared with the standard errors of the estimates. When transition
and survival probabilities are concerned, the nonresponse bias seems
to be smaller if the probabilities are estimated via the estimates of
transition intensities rather than by the proportions of decrements

and survivors.

In Section 6 I investigate two methods of adjusting for the
nonresponse bias. Both methods require estimates of the ratios
between the response probabilities for the decrements and survivors.
If these estimates are not accurate, the adjustment methods may
increase the nonresponse bias. Other adjustment methods are

discussed briefly.



2 The Nonresponse Model

2.1 Nonresponse modeling

Before presenting the nonresponse model used in this essay I give a
brief review of nonresponse modeling as presented in the literature.
The review is far from comprehensive. The purpose is only to

illustrate the variety of approaches to model nonresponse that have

been applied so far.

The presentation emphasizes unit (or total) nonresponse, although
there is no principal difference between unit and item (partial)
nonresponse. In almost every survey there exists some information
in the frame for all units in the sample, including the
nonrespondents. Such information could be used to model and treat
unit nonresponse in the same way as item nonresponse. In practice,
however, unit nonresponse is often modeled and treated globally for
all missing items while item nonresponse is treated by item-specific
direct or indirect imputation (or classified as "no answer" in
tabulations and analyses). In their review of methods for treating
missing survey data, Kalton and Kasprzyk (1986) show that nearly
all imputation methods presented can be described as relying on
special cases of a general regression model of the relation between

the variable with missing data and some auxiliary variables.

Survey statisticians have worked with nonresponse problems for
decades. In 1977 the Panel of Incomplete Data was established by
the US Committee on National Statistics. The panel's work was
published in three volumes of which the third consists of
proceedings of the 1979 Symposium on Incomplete Data (Panel on
Incomplete Data, 1983). The panel did not end up with a unified

theory for treating and modeling nonresponse. On the contrary, the



volumes present a wide spectrum of viewpoints reflecting the
practitioners' informal methods to provide reasonably accurate
statistics to a reasonable cost and the theoreticians' efforts to
make inference based on parametric models and maximum-likelihood
estimation or on extension of the randomization theory. There is an
agreement, however, that the treatment of nonresponse relies on
implicit or explicit modeling of the response mechanism or on direct

modeling of the values of the nonrespondents.

There are two main approaches to inference about finite population
quantities from sample surveys, the randomization approach and the
model-based approach (Rubin, 1983). The former, also referred to as
design—-based inference, treats values in the population as fixed and
the inference is based on the distribution generated by the sample
selection mechanism. The model—-based approach treats values in the
population as random variables and the inference is based on the
model specified for these variables and likelihood inference. In the
presence of nonresponse both approaches yield biased estimates if
the response mechanism is related to the survey variables. In that
case the response mechanism is nonignorable and has to be

incorporated in the inference model to yield unbiased estimates.

Little (1983) provides a conceptual framework and a review of
methods for handling nonresponse in parametric model-based
inference. Most of these methods rely on the assumption of
ignorable response mechanism and are not directly related to survey
data. For handling nonignorable nonresponse it has been proposed to
model the response mechanism by assuming that the survey variable
Y is observed when another interval scaled variable u, lies below a
threshold value c¢. The conditional probability that Y; is observed is
then obtained from the regression of u; on y; and other observed
variables w,. By means of such a model it can be investigated how

i
the nonresponse affects the likelihood based inference.



If auxiliary variables are observed for the total sample the
likelihood inference can be made in two stages to adjust for
nonresponse bias. Brehm (1990) has applied an approach suggested
by Heckman (1976, 1979) that involves two-stage analysis. The
response mechanism is analyzed in a first stage that provides
values for an additional regressor in the outcome model. The
coefficients of these additional regressors are estimates of the
covariances between the errors in the outcome model and the
response model. Brehm's analyses concern political research
(categorical variables) and he used three sets of auxiliary variables
to model the response mechanism: administrative variables of the
survey process (amount of persuasion, number of calls), behavioral
variables (four latent variables describing attitudes towards
strangers, etc, found by LISREL analysis on refusals' and reluctant
respondents' recorded reasons for not participating), and
demographic variables (sex, income, respondent's and interviewer's
race). The corrections induced changes in the estimated outcome
model coefficients that were consistent, sensible and substantively

important.

Other researchers have more directly combined an outcome model
with a response propensity model. Fay (1986) proposes log—linear
causal models for modeling ignorable and nonignorable response
mechanisms when survey data are categorical. Stasny (1986 and
1987) models the outcomes of a categorical survey variable and the
response mechanism in a panel survey. She combines a Markov-
chain outcome model with a Markov-chain response model where the
transition probabilities between response categories depend on the
outcome of the survey variable. Her approach allows a person to be
nonrespondent at both of two interview periods, but she has to put

constraints on the models to get an estimable number of parameters.
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For a comprehensive review of likelihood-based approaches to model

and treat nonresponse I refer to the textbook by Little and Rubin

(1987).

There seems to have developed a consensus that inference based on
randomization theory, like likelihood analysis, must rely on models
that cannot be tested by means of observed data when there is

nonresponse (Sdrndal and Hui 1981; Little, 1982).

Within the framework of randomization theory the response
mechanism can be regarded as either deterministic or stochastic.
With the deterministic approach the population is thought to be
divided in two strata, the response stratum and the nonresponse
stratum. The well-known Hansen—Hurwitz plan for subsampling
among nonrespondents rely on the assumption of deterministic
response behavior (Hansen and Hurwitz, 1946; Cochran, 1977, pp.
370-374). An early application of modeling a stochastic response
mechanism is the well-known procedure of Politz and Simmons (1949,

1950).

Lindstrdom and Lundstrém (1974) proposed a method to investigate
the magnitude of the nonresponse error by introducing a parametric
response propensity function, p(x)=axz+bx+c, where 0<p(x)<1 and x
is the survey variable that is assumed to be continuous with a
frequency function f(x). By means of that model they investigate
the variance and bias of the unadjusted mean for the respondents
for selected values of a and b and various frequency functions.
Lindstrém and Lundstrom define their response propensity function
as the "probability of selecting a responding unit among units with
the same variable value x". Their hesitation to directly define
"response probabilities" probably reflects that this concept was not

commonly accepted among survey statisticians at that time.



The articles in the three volumes edited by the Panel on Incomplete
Data, for instance: Oh and Scheuren (1983), Platek and Gray (1983)
and Cassel et al (1983), and later literature, show a development
towards modeling the response mechanism as stochastic rather than
deterministic. The concept of response probabilities seems now to
have been commonly accepted within the framework of design-—based

inference.

Oh and Sheuren assume a "uniform response mechanism", i.e.,
constant response probabilities within disjoint subpopulations, and
they regard the response mechanism as "quasi-randomization”.
Dalenius (1983) argues that "the response mechanism should be
formulated given the sample s, with consideration given to the
survey operations to which the units in the particular sample s are
exposed ." Sidrndal and Swensson (1987) make this possible by
regarding the outcome from the response mechanism as generated by
the second phase in two-phase-sampling. They assume that the
individual response probabilities are constant within response
homogeneity groups of the primary sample. (The number of such
groups and their definition are not necessarily the same for all
possible samples.) Given the response model is true, (approximately)
unbiased estimators follow from results obtained under the
assumption of "true" probabilistic two—phase sampling. Swensson and
Sidrndal also conducted a simulation study. This study showed that
a regression estimator performed better than the "simple expanded"
estimator concerning variance, sensitivity to wrong assumptions
regarding the response mechanism, and difference between coverage

rates of confidence intervals and nominal rate.

Bethlehem (1988) proposes a model with individual response
probabilities (not dependent on the particular sample) to investigate
the properties of the Horvitz-Thompson estimator (HT-estimator)

and the generalized regression estimator. Both estimators are
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modified for the nonresponse situation: The modified HT-estimator of
the population mean is defined as § = (Zyk/nk) / (Zlk/nk), where m,
is the sample inclusion probability. (Bethlehem also formulates
poststratification as a special case of the modified general
regression estimator). Ekholm and Laaksonen (1990) model individual
response probabilities and use estimates of such probabilities in a
"model based Horvitz—-Thompson estimator”. (The inverse of the
product of the sample inclusion probability and the response
probability is used to weight individual values.) This approach was
applied in the 1985 Finnish Household Budget Survey, where
estimates of the individual response probabilities were "predicted"

by means of a logit model.

Recent development of nonresponse modeling emphasizes the
behavioral aspect of nonresponse (Fay, 1986, Groves, 1989, Cialdini,
1990). "The causes of noncontact nonresponse are likely to be very
different from the causes of refusal nonresponse" (Groves, 1989, p.
183). This has implications both for the administration of a survey
and for the inference from the survey. Therefore, response models
should be extended to survey participation models that account for
all relevant factors affecting "participation probability"”, not just
covariates related to the sampled person. For instance, the well-
known variability between different interviewers' response rates is a
factor that could be used in an adjustment model. For a fuller
description of this matter 1 refer to chapters 4 and 5 in the

textbook by Groves (1989), and to Cialdini (1990) and Brehm (1990).



2.2 The nonresponse model for a competing risks model

Most nonresponse models reviewed in the previous section concern
estimation of fixed population quantities or linear regression
analysis. Exceptions are Fay's log—~linear causal models, Stasny's
Markov-chain models, and Brehm's two-stage correction used in
connection with outcome models for dichotomous dependent variables.
The nonresponse model proposed in this paper concerns traditional
competing risks analysis. The relevant parameters are the transition

intensities or other model parameters derived from them.

Following Cassel et al. (1983), I assume probabilistic response
behavior that is connected with the variables under study. The
response probability approach has also been applied by Platek
(1978), Andersson (1979), Little (1982), Hoem (1983), and others.

Consider a population of individuals (units) whose current life-
history segments may be described by a competing risks model.
According to some sampling plan, n units are selected at random
from the population. The sampling plan is assumed to be
noninformative, i.e., there is independence between life histories
and selection. This means that the life histories sampled may be
regarded as independent outcomes of the same stochastic process,
provided that the population is homogeneous and that there is
between—unit independence. (For a more detailed discussion of this

matter, see Hoem, 1983, Chapter 2; and Hoem, 1989.)

For the units sampled, we try to obtain information about the
transition behavior during some risk period. For various reasons,
however, we fail to observe some units, the nonrespondents. For the
respondents we here assume that complete information is obtained

without measurement errors.



Let the response behavior of an individual be independent of the
sample design and of the response behavior of other individuals
(although this is not always true in an interview survey). We
assume that the response behavior is probabilistic and depends on
the actual life history in the same manner for all units. This means
that the life histories observed can be regarded as independent
outcomes of the same stochastic process, defined by the competing

risks model and a nonresponse model. Such a model is defined below.

We consider n units observed from some time 0 until time z (right
censoring) under the competing risks model with constant intensities
Uy Hg..., Wy For each unit we define T = min(U,z), where U is the
time of transition out of State 0. Let Qj =1 and Qk = 0 for k#j and
j,k=1,2,..., K if transition due to cause j occurs before time z. If no
transition occurs before time z, then T = z and Qj = 0 for all j. Let
Q=2Qj,whichmeansthatQ=1ifT<z and @ = 0if T = gz,
and let R = 1 if the individual responds, R = 0 otherwise. The
response behavior (variable R) is assumed to be independent

between units and to satisfy

for j=1,2,..., K

]
-

P(R=1 l Qj=1)
and

P(R=1 |Q=0) = I

Thus, the response behavior depends on whether decrement occurs
during the time period (0,z) and from what cause, but not on when
it happens. (I do not distinguish between causes of nonresponse,
since most of the nonresponse in the 1981 Fertility Survey was

refusals, 11% compared with 2% noncontacts.)

The variables observed are R, Q3‘=R-Qj, Q*=R.Q, and T*=R.T. By this
definition, the values of the observed variables are equal to 0 for

the nonrespondents.



We use an extra subscript, v (v=1,2,..., n) to designate unit
(individual) number. The observed central rates then become

uj = I QJ?V / L T“, R (2.1)
where the numerator is the total number of decrements due to cause
j (=1,2,..., K) and the denominator is the total exposure time among

all respondents.

3 Some Empirical Results

In 1981, Statistics Sweden conducted a fertility survey among
Swedish women born in 1936-60. A sample of 4 966 women was
drawn by simple random sampling from each of five strata, a
stratum being one of the five-year birth cohorts (1936-40, 1941-
45,..., 1956-60) which constitute the target population. Interviews
were made with 4 800 respondents (87 percernt;,. & comparatively
high rate for a fertility survey. The response rates were higher
among women who had children (still) living with them than among
other women. For women born in 1941-45 the response rate was 89
percent among those with children compared with 72 percent among
the other women. (Since children here refer to children 17 years or
younger, the difference would probably be larger if we could account
for all children born.) This suggests an association between

response behavior and fertility.

The data from the survey have been used in several substantial
analyses. A technical documentation of the survey is given in
Lyberg (1984) and substansive descriptive results are given in
Information i prognosfragor (1982:4, 1983:4, and 1984:4). Results

based on life history analyses are presented in Quist and



Rennermalm (1985) and in several reports from the Section of
Demography at University of Stockholm (a late reference, including a

list of other reports, is Hoem (1990)).

The expected broad use of data from the survey called for a
thorough investigation of possible effects of the selective
nonresponse on estimates. In particular, there was a need to
investigate the effects of nonresponse in life history analyses. The
investigation conducted consists of two parts; an empirical study
based on comparisons with register data and a theoretical part
presented in this essay. Some results from the empirical
investigation of the connection between family history and response
behavior, and of the nonresponse effects on central rates (Lyberg,
1983) are shown in Figures 1 and 2 and in Tables 1-3. The results
are based on data from the Swedish Fertility Register mentioned
earlier. Since only information about response behavior is collected
from the survey, the results are not confounded by any

measurement errors in the survey.

With few exceptions, the response rate is higher at a given age
among women who left State 0 because of birth (f‘l) or marriage (f‘z)
than among those who remained in the state (f‘o). This means that
the age-specific central rates based on respondents only (ﬁ}f) are
higher than those based on the whole target sample (ﬁj). In other
words, the birth and marriage intensities are overestimated because
of the nonresponse. (It is only if zp is very large and both rj and
H are much larger for one cause of decrement than for the other,
that the intensity for the more rare cause might be underestimated
although the response probability for the decrements is larger than

for the survivors.)
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Figure 1. Response rates in the 1981 Swedish Fertility Survey among
those still childless at the end of a given five—year age
interval and among those who gave birth to their first
child in the age interval. Women born in 1941-45. Percent.
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Figure 2. Response rates in the 1981 Swedish Fertility Survey among
those still unmarried and childless at the end of a given
five—year age interval and among those who gave birth to
their first child or married in the age interval. Women
born in 1941-45. Percent.



Table 1. Age-specific first birth rates based on the whole sample and
the respondents only in the 1981 Swedish Fertility Survey.
Response rates among those still childless, by age, and among
those who gave birth to their first child in each age interval.
Women born in 1941-45,

Age First birth rates Response rates % Number of women
per 1000 still new in the sample
target respond- childless mothers still new
sample ents women child- mothers
ﬁl ﬁf f'o f'l less

1180 -

15 1 1 86 1179

16 12 10 86 1165

17 24 27 86 83 1137 188

18 56 57 86 1075

19 80 72 86 992

20 111 118 86 888

21 104 105 86 800

22 132 140 86 91 701 479

23 120 128 85 622

24 193 220 84 513

25 158 162 82 438

26 142 154 82 380

27 144 151 81 86 329 265

28 130 133 81 289

29 154 177 80 248

30 108 133 78 223

31 84 106 76 205

32 50 54 75 94 195 67

33 31 42 74 189

34 44 61 72 181

35 40 55 71 (100) 174 7




Table 2.

Age-specific first birth and first marriage rates among childless, unmarried
women based on the whole sample and the respondents only in the 1981
Swedish Fertility Survey. Response rates among those still childless and
unmarried, by age, and among those who left that state due to birth or
marriage in each age interval. Women born in 1941-45.

Age Birth rates

Marriage rates

Response rates % among

Numaber of

per 1000 per 1000 still child- new newly women still
sample respond— sample respond— less and mothers married childless &
ents dents unmarried unmarried
in the
By u; i, ug I, £ I, sample
1180
156 1 1 0 0 86 1179
16 10 8 3 4 86 1163
17 19 22 10 8 86 86 82 1130
18 34 34 47 45 86 (103)* (144)* 1042
19 31 30 78 74 86 933
20 34 39 129 134 86 791
21 36 36 173 184 85 640
22 26 29 178 181 84 92 89 521
23 30 34 202 219 83 (102) (499) 413
24 46 53 174 185 81 332
25 16 12 141 137 82 284
26 41 42 86 93 81 250
27 39 32 112 105 82 80 86 215
28 46 50 122 1561 80 (51) (131) 181
29 104 118 92 118 77 149
30 35 47 57 66 75 136
31 30 31 15 20 75 130
32 16 22 65 89 72 94 96 119
33 18 25 53 75 70 (16) (26) 110
34 28 41 19 27 69 105
35 30 44 40 59 66 (100) (100) 98

(3)

(4)

* Number of new mothers (newly married) in the whole sample.



Table 8. Duration-specific first birth and divorce rates among childless, first married
wormen based on the whole sample and the respondents in the 1981 Swedish
Fertility Survey. Response rates among those still childless and married, by
duration in marriage ("age"), and among those who left that state due to
birth or divorce in each duration interval. Women born in 1941-45 and first
married as childless at age 20-24.

Age Birth rates Divorce rates Response rates % among Number of
" per 1000 per 1000 still child— new newly women still
sample respond— sample respond- less and mothers divorced childless
ents dents married and married
in the
i u'f i, u§ £ r, t, sample
89 502
0 499 519 0 0 87 303
1 500 493 0 0 88 183
2 3869 395 7 8 86 91 (100) 127
3 410 482 50 60 79 (422)* (8)* 81
4 105 136 26 34 76 71
5_.
10 104 122 56 41 79 86 (563) 28
(28) (15)
* Number of new mothers (newly divorced) in the whole sample.

*x Age refers to number of years in marriage (duration).

Among those 502 sampled women born in 1941-45 who married as
childless in age 20-24 only 23 (4.6%) divorced as childless during
the first eleven years of marriage. Sixteen 16 (70% or 68-71% with
95% confidence) of those divorced women participated in the survey.
Among those 450 women who did not divorce but gave birth to a
child within the first eleven years of marriage no less than 408
(91%) participated in the survey. Among those 28 women who were
still married and childless after eleven years of marriage 22, (79%
or 77-80% with 95% confidence) participated in the survey.

(The number of women in the three groups does not add to 502 -
one woman is "lost". She might have been temporarily emigrated and
thereby not covered by the register for some period.) These
differences in response rates mean that the central rates based on
respondents overestimate the marital fertility and underestimate the

divorce intensities (except for the first five years).



4 Technical Bias, Variance and Covariance of Central Rates

In this section the theoretical model presented in Section 2 is used
to investigate the effects of nonresponse on the technical bias due
to ratio estimation, on the variance and on the covariance of
central rates used as estimates of transition intensities. I present
some well-known results for the complete response situation and
investigate whether they are valid when there is nonresponse as
well. It is found that they usually are. Most of the time, the
technical bias can be ignored. If those who decrement from various
causes have response behaviors which differ from each other and
from those of the survivors, then the central rates for different
causes are in fact correlated, and the usual variance estimator is
biased. However, the correlation and the bias of the variance
estimator are probably insignificant for realistic values of
intensities and response probabilities. Finally we present an

approximately unbiased covariance-variance estimator.

4.1 The complete response situation

When all units respond, the central rates in (2.1) are maximum
likelihood estimators of the intensities uj (j=1,2,..., K). In that case,
the rates are asymptotically independent and normally distributed
with expected values and variances (see, for instance, Hoem and

Funck Jensen (1982), and the Appendix):

24

E(iL)

J B [1 + (q—-pzn)/nq?] (4.1)

and

v(ﬁj)

143

uju/nq for j=1,2,..., K (4.2)

where q=1-p = 1= exp(-zp) and u=2uj.




The second term in the brackets of (4.1) is the (approximate)
technical bias. This bias decreases faster than the standard error
as the number of observations increases. The relation between the
technical bias and the standard error is shown in Table 4, based on
results provided by Beyer et al (1976) and Vath (1977). Their
results are calculated from exact formulas for expected value and
variance, but calculations based on the approximate expressions in
(4.1) and (4.2) with z=1 give the same results down to the second

decimal in most cases.

Table 4. Relative technical bias and ratio between technical bias and
standard error of occurrence/exposure rates without
nonresponse, by sample size n, for z=1.

Transition Exact values Approximate values

intensities n=10 n=30 n=50 n=10 n=30 n=50

H uj Uj/u
relative .1 all .056 .018 .010 .052 .017 .010
bias 1.0 all .074 .023 .014 .066 .022 .013
technical .1 .01 1 .02 .01 .01 .016 .009 .007
bias/ .05 .5 .04 .02 .02 .036 .021 .016
s.e. .10 1.0 .05 .08 .02 .050 .029 .023
technical 1.0 .10 .1 .05 .03 .02 .053 .030 .024
bias/ .50 .5 12 .07 .05 .118 .068 .0538
s.e. 1. 1.0 .16 .10 .07 .166 .096 .074

It appears that the technical bias is very small compared to the
standard error for small values of n and uj/u. The technical bias
can give a significant contribution to the mean square error only if

1 is very large and the number of observations is very small.

4.2 The nonresponse situation

In the nonresponse situation, the approximate moments of the

central rates in (2.1) become (see Appendix, Theorem 1):
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E(A?) = il + (q-pz (.- pzu(zu—-q) 2
n; uji (a-p u)rqll (rQ ry a*(q-pzn) }/n{ut*)2 ,  (4.3)
V(ﬁ;) = u‘u}‘[l—qga’]/nq* (4.4)
and
Cov(-ﬁ'{,ﬁ}) = - u’{u]fa‘/n for i,j=1,2,..., K (4.5)
where
. pzp(zp=-2q+pzyp) _
2 q(nt*)? (g = 1)
and where
I, = Zj ul.rj (with uj.=uj/u)

is the overall expected response rate among all departures,

= E(QJ?) =T . qQ* = E@) =14
and

t* = E(T*) = [qu-pzu(rQ—ro)]/u .

By = g/t no= g/t

If rj =r =1 for all j, i.e., if all units respond with probability 1,
then (4.3) and (4.4) become equal to (4.1) and (4.2), respectively,
and (4.5) becomes equal to 0. If the response probabilities are equal
(a rather unrealistic assumption), i.e., if rj =ry=r for all j, then
the covariance expression in (4.5) again becomes equal to 0 and the

expressions in (4.8) and (4.4) become

E(ﬁ;) = ugil + (q-pzp)/nrq?} ,
and

V(ﬁ’j) = uuj/nrq, for j=1,2,..., K
where

r = arg + pry

is the overall expected response rate. Thus, if the response
probabilities are equal for all units, the only effect of nonresponse
on the technical bias and on the variance is that they both

increase as the expected number n.r of observations decreases.

We have made a series of trial calculations of the standard error

and technical bias; some of these calculations are listed in Table 5,
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which shows the effect of unequal response probabilities when the

overall expected response rate, r = qu+ pry, is 85 percent.

Table 5. Increase in relative standard error (coefficient of
variation) and relative technical bias of {i* due to
selective nonresponse with an overall expected response
rate of 85 percent, for z=1. One cause of decrement.

Transition Response probability % Increase in

intensity relative relative
uj=u r, I, standard technical

error bias

0.01 95 84.9 1.03 1.18

75 85.1 1.15 1.18

0.10 95 84 1.03 1.18

75 86 1.15 1.18

1.00 95 68 1.01 1.16

76.3 100 1.16 1.17

All 85 85 1.08 1.18

With equal response probabilities of r = 0.85 for all units,
irrespective of the outcome of the life history, the relative standard
error and technical bias will increase by 8 percent and 18 percent,
respectively, due to nonresponse. The increase is larger for the
technical bias than for the standard error. Further calculations
suggest that the standard error seems to be more sensitive to the
difference between r, and r,. For the technical bias, the increase
seems to be approximately proportional to the inverse of the overall
expected response rate r, no matter how much I, and r, differ. This
is generally valid for small intensities, u < 1. Thus, most of the
time, the technical bias behaves in the same manner in the
nonresponse situation as in the complete response situation: the
bias is proportional to the inverse of the number of observations

and is insignificant if this number is large enough.
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The central rates for different risks become correlated if the
response probabilities differ, as is shown in (4.5). The term a*
usually becomes very small, however, and the correlation between

the central rates can be ignored. This is illustrated in Table 6.

Table 6. Approximate correlation between estimators of transition
intensities for two causes of decrement, for z=1. Percent

Response prob— Transition intensities

abilities n = 0.1 1.0 3.0 5.0

% ”1= 0.05 0.5 0.3 1.6 0.5 2.5

1‘1 I’2 ro 112: 0.05 0.5 2.7 1.5 4.5 2.5

95 95 75 -0.0 -1.3 -1.4 ~-2.4 -0.7 -1.1
95 75 55 -0.1 -2.7 -2.2 -4.2 -1.0 -1.9
75 95 55 -0.1 -2.7 -2.8 -4.2 -1.2 -1.9
75 55 95 0.0 1.3 3.6 3.9 2.2 2.3
55 75 95 0.0 1.8 1.5 3.9 0.8 2.3
55 55 95 0.0 1.7 3.4 5.7 2.1 3.5

In the nonresponse situation, the usual variance estimator becomes
V(ﬁJf) = ﬁ‘j‘/ZT;, for j=1,2,..., K, (4.6)
where ET; is the total exposure time among the respondents. When

there is no nonresponse, this estimator is approximately unbiased.

In the presence of nonresponse, its expected value is approximately

Q

E[V(ﬁj’)] u}‘/nt’ = uj'u"/nq‘

V(ﬁ})ll + q}a‘/(l-q}a')]. (4.7)

The second term in the brackets of (4.7) is the approximate relative
bias of the variance estimator in (4.7). Like the covariance in (4.5),

this bias depends on a*, which is equal to 0 if the response
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probabilities are equal, i.e., if rj =T, for all j. If the response
probabilities differ, the variance estimator is biased, but the bias is

usually very small (see Table 7 and Figure 3).

Table 7. Relative bias of the variance estimator in
(4.6) for one cause of decrement, for z=1.

Percent.
Response
Probabilities Transition intensity
%
r, r, 0.01 0.1 0.5 1
95 55 .00 .19 3.04 7.58
95 75 .00 .05 97 2.68
55 75 -.00 -.03 -.71 -2.381
55 95 -.00 -.04 -.95 -3.31
% 1
10 r1=.95
5_ r1:.75
r1=.95
04
ri=.75
- r=.55
-1 r1=.55
-15
0. l 2 3 4, 9 b 7

Z)

Figure 3. Relative bias of the variance estimator in (4.6) for one
cause of decrement with intensity u and observation until
time z. Selected values of response probabilities for
decrements (rl) and for survivors (ro), respectively.
Percent.

r0=.55
r0=.55
r0=.75
r0=.95
r0=.75
r0=.95



Thus, we can usually rely on the common variance estimator even in
the nonresponse situation and also ignore the small correlation
between different central rates. If we have any doubts, however, we
can use the following estimator (derived in our Appendix, Theorem
1), which estimates the variances and covariances approximately

unbiasedly:

cov(ff ap = 2 E (0}, -0]T) (0} -0jT) /[ETs)2,  (4.8)

for i,j = 1,2,..., K. The term n in (4.8) is the number of sampled
units which belong to State 0 during the relevant observation
period. (This number corresponds to the figures in the last columns
in Tables 2 and 3.) Usually this number is unknown. Replacing n{(n-
1) by 1 results in a slight underestimation. Replacing n(n-1)" by
nr(nr—l)-l, where n, is the number of observed units during the

relevant period, gives a slight overestimation instead.

5. Nonresponse Bias

In the preceding section I showed that the technical bias of the
central rate ﬁlf usually is insignificant. This means that E(ﬁ;) =
q}/t‘ = u] which, however, is usually not approximately equal to

the transition intensity uj. The estimator suffers from nonresponse
bias. This bias is serious, since it cannot be estimated from

observed data. Also, the nonresponse bias does not decrease as the
number of observations increases, unlike the technical bias. On the
contrary, the ratio between the nonresponse bias and the standard

error increases as the number of observations increases.
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In this section it is shown how the nonresponse bias of central
rates can be expressed as a function of the differences between the
response probabilities of the decrements from various causes and for
the survivors. I discuss how large the nonresponse bias may be; it
turns out that it may be very large if the response probabilities
differ greatly. I have also investigated the effects of nonresponse
on estimates of transition and survival probabilities. It was found
that the nonresponse bias seems to be less important if such
probabilities are estimated via the central rates rather than

directly by the proportions of decrements and survivors.

respectively.
5.1 Nonresponse bias of central rates
The nonresponse bias of the central rate ﬁ}f (j=1,2,..., K) is
approximately
* %* r;u;q
b(fi;) = q-/t*-u-= JTIE -
J J J *
tu
glr;-ry) +pzu(ry-ry)
=py = 0 ¢ (5.1)
*
tu
X
= () [glrj-rg) +pzulry-r)l (5.2)

where o(ﬁ‘}) = fV(ﬁ’j) = u‘}u'/nq‘. The approximation in (5.2) is

based on the assumption that the term q}‘a" in (4.7) is insignificant,

which is usually true (see the preceding section).

The nonresponse bias of ﬁ}f‘ (j=1.,2,..., K) is positive if rj > rQ > r,

and negative if rj < < r,. If the response probabilities are equal,

q
ie., r}. =T, for all j, there is no nonresponse bias. At the end of

this section I present values of the relative nonresponse bias (Table

13) and of the ratio between the nonresponse bias and the standard

error (Table 14). Tables 8 and 9 are excerpts from those tables. The
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results show that the nonresponse bias may be very large if the

response probabilities of decrements and survivors differ greatly.

Table 8. Relative nonresponse bias, b(ﬁ})/uj. Percent;

z=1

Expeqted response Transition intensities

rates’, % uj = 0.1
rj T r_j p = 0.1 np = 0.5 n=1
95 75 95 25 19 14
95 75 75 25 25 25
75 95 95 - 20 - 20 - 20
75 95 75 - 20 - 17 - 13

r_j is the overall expected response rate among

decrements from any other cause than j.

Table 9. Ratio between nonresponse bias and the
standard error, b(ﬁ?)/o(ﬁ}), for sample size
n=100. Percent; z=

Expe(ited response Transition intensities

rates, % uj = 0.1
rj T, r_j p = 0.1 H = 0.5 p=1
95 75 95 60 44 30
95 75 75 60 55 49
75 95 95 ~ 68 - 62 - 56
75 95 75 ~ 68 - 50 - 34

In our fertility survey, the differences between the response
probabilities for decrements and survivors increased with age (see
Tables 1 and 2). This is natural, since the group of survivors
becomes more and more homogeneous with respect to fertility and
nuptiality (and response behavior) with increasing age. This means
that the nonresponse bias becomes more serious when we analyze
the life histories for high ages. This is illustrated in Table 10,
where the transition intensities and respond probabilities are based

on the corresponding estimates in Table 2.
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Table 10. Relative nonresponse bias and ratio between the
nonresponse bias and the standard error for realistic
values of transition intensities and response
probabilities. Sample size n=100; Percent; z=1.

Transition Response prob- Relative Ratio between
intensities abilities, % nonresponse the bias and
bias of the s.e, of
bWy W T, T np g oy
.03 .05 .08 86 82 86 0 -4 0 -9
.03 .15 .18 92 89 81 13 9 18 29
.03 .15 .18 80 86 77 3 11 4 33
.02 .05 .07 94 96 69 34 37 35 59

If there is only one cause of decrement, the expected value and

relative nonresponse bias of {i* become

E(fi*) = ux =p/[1 - P20 (1 -1,y (5.3)
qg W
and
rb(fi*) = (pn* -p) /u=(w-1)/[1 +wgln)l, (5.4)

respectively, where

o) =9 _1 -3 (zm"
pzu 7=2 v!

(5.5)

and w = rl/ro.

The term g(u) increases with zp. Thus, the relative nonresponse
bias is insignificant for very large values of zj, and is
approximately equal to (w—-1) = (rl— ro)/rO if zp is much smaller
than 1. Figure 4 shows the relative nonresponse bias for various
values of zp and of the ratio w. Realistic values of that ratio are

given in Table 11.



Table 11. Values of w = rI/ro for selected realistic
values of r, and I,

T I

3 4 5 6 7 8 9
3 1 8 6 5 4 4 3
4 1.3 1 8 7 6 5 4
5 1.7 1.3 1 8 7 6 6
6 2 1.5 1.2 1 9 8 7
7 2.3 1.8 1.4 1.2 1 .9 8
8 2.7 2.0 1.6 1.3 1.1 1 9
.9 3.0 2.3 1.8 1.5 1.3 1.1 1

% m 1 b

Eg ~ g+ 0.5
m _ M I = {
Pl — Zu s )
0 g = 5
_20_

g = 3

g -40+
-6[]-

I = 2

i -30%

p = 0.001 -100

A\l T L T T

010203 040506070808 100112103 06L50L60L7 L8 LI 20
w = Tl/ro

Figure 4. Relative nonresponse bias of {i*. Percent

5.2 Nonresponse bias of estimated transition and survival

probabilities

One often wants to estimate the transition probabilities qj = Pj(O,Z)
= quj/u = [l—exp(—zu)]uj/u, for j=1,2,..., K, and the survival
probability p=1—-q= exp(-zp). Various estimation methods are
available. We discuss two of them. One is based on the estimated

transition intensities and the other on the observed proportions of
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survivors and decrements due to the various causes. In the

nonresponse situation those estimators become (for z=1):

qQ = q'f/ps for j=1,2, ..., K,

p' = 1-q' = exp(-zii*) (5.6)
and

L
qr = T Q* /n for j=1.,2, ..., K,
j h jiv

V=1

K

p' = 1-q¢" =1-34q!, (5.7)

respectively, where n, is the number of respondents. Both methods
give consistent estimators when there is no nonresponse. The latter
estimators are also unbiased in that case. The former estimators ,
however, have slightly smaller asymptotic variances. In the

nonresponse situation both methods give rise to nonresponse bias:

N = _ P ny = E()  _
rb(p') clrb(q) D 1

Q

expl—-(w-1)zph(zp)] - 1

and

rb(p") = - 5 rb(q") = ——E—E(p") -1

e

= (w-1)q/lp+wql ,

where h(zn) = 1/[1 + wg(zn)] with g(zn) given in (5.5). Both
estimators underestimate p and overestimate q if w=rQ/r0>1 and vice
versa. (As before, rQ and r, are the response probabilities among
decrements of any cause and among survivors, respectively). It can
be shown that the magnitudes of the relative biases increase with

|w—1|.



Calculations with realistic values, (0.02< p,q < .98 and 0.15 w

<5), show the following relations for the relative biases of the

estimators:
0 < rb(q') < rb(g") and
rb(p") < rb(p') < 0 if rq > T,
and
rb(q") < rb(q') < O and
0 < rb(p') < rb(p" if ry <1y

Calculations for .1<w<5 and .02<p,q<.98 also show that:

0 < |rb(®")| - |rb(p')| decreases with p for all p,
and increases with [w—ll except
for small w; w<w(p)ﬁm<1,

and that

0 < |rb(q")| - |rb(p‘)| increases with q except for
large q; @>qy,
and increases with |w-—1| except

for small w; W<W(q)h’m<1’

where, for instance, :

p q WPy, w(Q)y, w QU
8 .2 .6 .6 2 .96
5 .5 .5 5 .8 .86
37 4 4 1.2 .80
.3 7 4 4 2.6 .54




For realistic values of w and p=1l-q, however, the estimators'
relative nonresponse biases differ by a few percentage points only.
Examples of the results presented above are shown in Table 12 and

Figures 5 and 6 below, and in Table 15 and at the end of this

section.

Table 12. Relative nonresponse bias of estimated
survival probabilities obtained via estimated
intensities (p') and observed proportions of
survivors (p"), respectively. Percent.

Parameter Response probabilities, %
values r,=95 r,=75

r0=75 r,=95

w=1.27 w=0.79
Z- P % rb(p') rb(p") rb(p") rb(p")
0.01 99 - 0.3 - 0.3 0.2 0.2
0.10 91 - 25 -23 2.0 2.0
1 37 -13.0 -14.4 14.4 15.4
2 14 -13.2 -~18.7 16.7 22.3
5 1 - 8.6 -20.9 4.6 26.4




7 S=XQ=Np
© 200 q=-0.
150 / q=0
100
q=0
50 — q=0
H—— -
.95 q=0
.80 g
50
100 FHH—
SRl SR L0 1§ 202 3.0
Ratio between response probabilities, w=r1/r0
ponts | ro(g )| —  |rodgn|
b -
g=0.95
q=0

j \ /jq‘”:
1\ e
| q=0.8 ‘/’,/"

o qz n

1 q=0
q=0.50 |

0 e q=0
0 0.5 1.0 1.5 2.0 2.5 3.0

Ratio between response probabilities, w=r1/r0

Figure 6. Relative nonresponse bias for q'z=exp{(—fi*) and difference
between !rb(q")l and |rb(q’)|, by W=I'1/I' for selected
values of q. Percent and percentage poin%s.

Figure 5 shows how the size of the relative bias for the estimator

q' increases when the difference between the response probabilities
of decrements and survivors increases. For realistic values of q and
w, the relative nonresponse of the estimator p" is only a few

percentage points larger in magnitude than that of p'.
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Figure 6. Relative nonresponse bias for q'=exp(-{i*) and

difference between rb(q" and rb(q)[ by q for
selected values of W r/r ercent and percentage

points.

Figure 6 shows how the relative bias for the estimator q' decreases
with q. The difference between |[rb(q")| and [rb(q')| also increases
with q, if q is not very large. This difference is, however, only a

few percentage points.




The estimators q' and p' that are based on estimated transition
intensities perform better than the corresponding estimators q" and
p" that are based on observed proportions of decrements and
survivors. The former have slightly smaller asymptotic variances
and slightly smaller nonresponse bias. However, the former require
more information: One must know when the decrements occur to

calculate the denominator of the central rate.

5.3 Summary of results

Tables 13 and 14 present the nonresponse bias for central rates
used as estimates of transition intensities for selected values of “j
and p and various response probabilities. Table 13 presents the
relative nonresponse bias and Table 14 the ratio between the

nonresponse bias and the standard error for n=100.

Table 15 shows the relative nonresponse bias for estimates of
transition intensities and of transition and survival probabilities
when there is only one cause of decrement. The relative bias is
large when the response probabilities differ greatly and the
parameter estimated is small. Thus, the absolute nonresponse bias
may be small but is nevertheless important when estimates of

small-valued parameters are compared in the analysis.
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Table 13. Relative nonresponse bias of ﬁ'j for selected values of uj and p; z=1.

Percent.
Expected” Transition intensities
response rates
% uj=0.01 m=0.1 1,=0.01
r'j r, r_j n=0.01 u=0.1 u=0.1 p=0.5 np=1 1u=0.5 n=1 n=>5
95 95 75 0 1 0 4 9 0 5 22
55 0 2 0 8 19 0 10 58
75 75 95 0 -1 0 -5 -9 0 -5 -19
55 0 1 0 5 11 0 6 30
55 556 95 0 -3 0 -12 -21 0 -13 -39
75 0 -2 0 -8 -12 0 -7 -24
95 75 95 26 25 25 19 14 19 14 1
75 26 27 25 25 25 19 20 23
55 26 28 25 31 39 19 27 60
75 556 95 36 32 34 19 6 26 11 -18
75 36 34 34 26 18 26 18 1
56 36 36 34 34 34 26 27 32
95 55 95 72 67 67 48 32 48 32 1
75 72 69 67 57 48 48 41 25
55 72 72 67 67 68 48 50 61
75 95 95 -21 -21 -20 -20 -20 -17 -17 -19
75 -21 -20 -20 -17 -13 -17 ~-13 -1
85 ~-21 -19 -20 -14 -5 -17 -9 29
556 75 95 =27 -27 -26 -29 -33 -22 =27 -39
75 =27 -27 -26 -26 -26 -22 -22 -25
55 -27 -26 -26 -22 -17 -22 -17 -1
55 96 956 -42 -42 -41 -41 -41 -36 -37 -40
75 -42 -41 -41 -39 -36 -36 -33 -25
55 -42 -41 ~-41 -36 -30 -36 -30 -2

r_j is the overall expected response rate among decrements from any cause

other than j.



Table 14. Ratio between nonresponse bias and standard errorz) of ﬁ}‘ for selected

values of uj and u; z=1 n=100. Percent.

1)

Expected Transition intensities
response rates
% uj=0.01 uj=0.1 uj=0.01
rj r r_j n=0.01 p=0.1 n=0.1 p=0.5 p=1 p=0.5 pn=1 n=5s
95 95 756 0 1 0 11 19 0 24 56
55 0 2 0 21 39 0 48 112
75 75 95 0 -1 0 -12 -22 0 -27 -63
55 0 1 0 12 22 0 27 63
55 55 95 0 -2 0 -28 -51 0 -63 —148
75 0 -1 0 -14 -26 0 -32 -74
95 75 95 20 19 60 44 30 99 67 2
75 20 20 60 55 49 99 91 58
55 20 21 60 65 69 99 115 1156
75 55 95 23 20 68 38 12 112 48 -61
75 23 21 68 50 34 112 76 2
55 23 22 68 62 56 112 103 66
95 55 95 41 38 120 89 60 198 134 4
75 41 39 120 99 79 198 158 61
55 41 40 120 110 99 198 182 117
75 95 95 -23 -22 -68 -62 -56 -112 -103 -66
75 -283 -21 -68 -50 -34 -112 -76 -2
55 -23 -20 -68 -38 -12 -112 -48 61
55 75 95 -27 -27 -79 -86 -90 -130 ~-152 -151
75 =27 -26 -79 -72 -65 -130 ~120 -77
55 -27 -25 -79 -58 -39 -130 —88 -3
55 95 95 —-54 -52 -158 -144 -130 -261 -~240 -154
75 -54 -51 -158 -130 -104 -261 —208 -80
55 -54 -50 -158 -117 -79 -261 -176 -6

1 . is the overall expected response rate among decrements from any cause

r
ofher than j.

2 The figures should be multiplied with 0.1 vn, where n is the sample size.



Table 16. Relative nonresponse bias of estimators of transition intensities, of
transition probabilities and of survival probabilities. Percent.

Parameter values

Estim- zu= 0.01 0.10 0.69 1.00 2.00 3.00 5.00
p = 0.99 0.90 0.50 0.37 0.14 0.05 0.01
atorl) q = 0.01 0.10 0.50 0.63 0.86 0.95 0.99
r = 95% r, = 75%
i 26.50 25.03 17.09 13.96 7.06 3.42 0.72
p' ~0.26 -2.47 -11.17 -13.03 -13.16 -9.76 -3.53
p" -0.26 -2.47 -11.76 —-14.42 -18.74 -20.22 -20.94
q' 26.33 23.50 11.17 7.58 2.06 0.51 0.02
qQ" 26.33 23.53 11.77 8.0 2.93 1.06 0.14
r = 95% r, = 55%
fi* 72.10 66.76 41.22 32.46 15.18 7.09 1.45
p' =0.72 -6.46 -24.85 =27.72 -26.19 -19.15 ~-6.99
p" -0.72 -6.47 -26.66 -31.49 -38.61 -40.87 -41.94
q’ 71.48 61.41 24.85 16.13 4.10 1.00 0.05
q" 71.49 61.55 26.67 18.33 6.04 2.14 0.28
r, = 55% r, = 75%
ik —-26.57 -25.69 -20.13 -17.47 -10.22 -5.41 -1.22
p' 0.27 2.60 14,97 19.08 22.68 17.61 6.28
p" 0.27 2.60 15.38 20.27 29.97 33.94 36.03
q' -26.47 -24.75 —-14.98 -11.11 -3.65 -0.92 -0.04
q" -26.47 -24.76 -15.39 -11.80 -4.69 -1.78 -0.24
r = 55% r, = 95%
ik -41.98 -40.88 -33.52 -29.74 -18.54 -10.26 -2.41
p' 0.42 4.17 26.15 34.63 44.90 36.04 12.79
p" 0.42 4.17 26.66 36.27 57.25 66.69 71.88
q' -41.86 -39.68 —-26.15 -20.16 -7.03 -1.89 -0.09
q" -41.86 -39.69 -26.67 -21.11 -8.96 -3.49 -0.49

is the occurrence/exposure rate based on data for the respondents,

p', @' are the estimators of survival and transition probabilities,
respectively, based on the estimated transition intensity:
p'=1-q'=exp(-z{i*),

p", q" are the corresponding estimators based on the observed proportion of
survivors and decrements, respectively.



6. Two Ways of Adjusting for the Nonresponse Bias

Since the "naive" central rates in (2.1) are biased in the presence
of nonresponse, two methods for adjusting for such bias are
investigated. Both of them are based on the assumption that it is
possible to get accurate estimates of the ratios wj = rj/ro (j=1,2,...,
K) between the response probabilities for the decrements and the
response probability for the survivors. If such good estimates are
available, we may decrease the nonresponse bias almost completely
by adjustment methods. We take a risk, however: the nonresponse
bias may in fact be increased by the "adjustment" methods. This
happens if our estimates of the {wj} are inaccurate. This is a
finding analogous to those made by Frankel (1969) and Thomsen
(1973) for design—based adjustment methods (groupwise weighting

and post-stratification).

I begin by presenting the two adjustment methods which provide
consistent estimators if exact values of the {wj} are available. After
that I illustrate how the estimators are affected by erroneous
estimates of w=r1/r0 when there is only one cause of decrement. I
also try to provide some rules of thumb for deciding when one
adjustment method is better than the other. Finally, some other
common adjustment methods are discussed and it is explained why

they seldom can be used in life—history analysis.

6.1 Description of the methods

Suppose that we are willing to guess or use previous surveys to
estimate the ratios between the response probabilities by wjf =rj’/r6

(j=1,2,..., K). In the following we do not distinguish between pure



nonrandom guesses and random estimates. Both are denoted WJ!, and
so is the expected value of a random estimate w; The distinctions

are unimportant here.

The first adjustment method is inspired by standard sampling
methods, where an observation is weighted by the reciprocal of the
probability of its inclusion in the sample. In our nonresponse
situation this probability depends on the outcome of the life
history, according to the model in Section 2. The weighted central

rate becomes:

- for j=1, 2, ..., K, (6.1)

1 if the individual is a survivor and a

where Q) = R(1-Q)
respondent, and Qa = 0 otherwise. As before, the variables observed

(QJ? and T*) are equal to O for the nonrespondents.

Multiplying the numerator and denominator in (6.1) by r('), we see
that the estimator can be expressed as a function of the ratios wll.
If the technical bias is insignificant, we can easily derive the
expected value of the estimator in (6.1) by means of the results in

the Appendix (Theorem 1). When there is only one cause of

decrement, the nonresponse bias of ﬁjf = fi' can be expressed as
iy . pzu(w-w')
rb(ii") = [E(@")-ul/n = W s
qw - pzp{w-w")
= (w=-w')/[w'+ wg(u)] , (6.2)

where w=rj/r0 and w'=rj'/r('), and g(p) was given in (5.5).
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Figure 7. Nonresponse bias of the adjusted estimator {i' for zp=0.01
and zp=1 and selected values of the guessed ratios,
W'=r]/r0, between the response probabilities. Percent.

The adjusted estimator in (6.1) is approximately unbiased if the
ratios between the response probabilities can be estimated (guessed)
correctly. Figure 7 shows, for zp = 0.01 and zp = 1, and for
various values of w and w', how the nonresponse bias may decrease
or increase by using the adjusted estimator {i'. For instance,
suppose zji = 0.01 and w=1.3, which are rather realistic values. If

we do not adjust, i.e., if we let w'=1, then the nonresponse bias is
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about 30 percent (zp*=0.013). Adjusting with w'=1.2 or w'=1.4 would
decrease the nonresponse bias to about 10 percent and - 7 percent,
respectively. Adjusting with w'=0.8, however, would increase the

nonresponse bias to about 60 percent!

The second adjustment method was suggested by Hoem (1981). This
method is based on the fact that the expected values of the
unadjusted estimators ﬁ}‘ (j=1,2,..., K) can be expressed as functions
of the parameters 1 = (ul,..., uk) and w = (Wl’ Woseons WK)' By (5.1),

E(ﬁjf) =nt = flp,w , for j=1,2,..., K, (6.3)

)

]
w = (W'I, W,..., wk), respectively, for j=1,2,..., K, we get a system of

for a suitable function f. By replacing u}f and w in (6.3) by it and

K equations in which the unknown terms p can be found by an
iteration method. With only one cause of decrement, the system

reduces to the following single equation:

pr o= o - P21y (6.4)
q w

were W'=ri/r(‘) is the guessed ratio between the response probabilities

for decrements and survivors.

The equation in (6.4) can be solved, for instance, by the Newton-—
Raphson method. This gives the following iteration formula (see

Appendix, Theorem 2):

ce 2
[0 ul/sn]sn

un+l = zZn ’ (65)
1 + n (sn-l)

9

where



s =1—Enz

n q )

1
(1 ~

n
p, = 1 = q = exp(~-zp).

A number of trial calculations with different starting values have
shown that the iteration process converges very fast. Only a few
steps are necessary to obtain accurate approximations. We have
used as starting values the expected values of the unadjusted
estimate {i* or the adjusted estimate {i'. The adjusted estimate found
by this iterative method is approximately unbiased, provided that w'

= Ww.

6.2 Comparison of the methods

TRl

Let us denote by {i" the estimator (estimate) found by the iterative
method. Figure 8 shows how the relations between the expected
values of the three estimators {i*, {i' and {i" on the one hand and
the parameter value 1 on the other, depend on the relation between
w, w' and 1. (The results are derived in the Appendix, Theorem 3.)
If the true ratio w is less than 1, the unadjusted estimators have a
negative nonresponse bias. This is true also for the adjusted

estimators {i' and {i" if w'<w, i.e., if we overestimate the ratio

w=rl/r0 between the response probabilities.
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Figure 8. Relations between the expected values of the three
estimators: {i* (unadjusted), {i' (adjusted by weighting), fi"
(adjusted by the iterative method), and the true parameter
value p, for various relations between w, w' and 1.

Both adjustment methods reduce the size of the bias without
changing its direction if 1<w'<w or w<w'<1, i.e., if w' is on the
"right" side of 1. If we overdo our adjustment, i.e., w'<w<l or
1<w<w'., we change the direction of the bias and may even increase
its size. Both adjustment methods always increase the bias (without

changing its direction) if w' is on the "wrong" size of 1.

Figure 8 shows that the adjusted estimators work in the same way.
In fact, via a number of calculations, we have found that they also
change the nonresponse bias to approximately the same size if zu is
not too large. This is illustrated in Table 16. We had to choose zp

as large as 1 and 5 to obtain visible differences between u' and u".
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Table 16. Expected values of the three estimators: fi* (unadjusted), {i'
(adjusted by weighting), and {i" (adjusted by the iterative
method).

True and estimated ratios between response probabilities
w = 0.8 w=1 w=1.2
yAll w'=0.8 w=1.0 w'=1.2 w'=0.8 w'=1.0 w'=1.2 w'=0.8 w'=1.0 w'=1.2
.001 zfi* .00080 .00080 .00080 .00100 .00100 .00100 .00120 .00120 .00120
zfi' .00100 .000890 .00067 .00125 .00100 .00083 .00150 .00120 .00100
zfi" .00100 .00080 .00067 .00125 .00100 .00083 .00150 .00120 .00100
.010 zfi* .00801 .00801 .00801 .01000 .01000 .01000 .01199 .01199 .01199
zfi' .01000 .00801 .00668 .01248 .01000 .00834 .01496 .01199 .01000
Zz{i" .01000 .00801 .00668 .01249 .01000 .00834 .01496 .01199 .01000
.100 zfi* .08079 .08079 .08079 .10000 .10000 .10000 .11883 .11883 .11883
zfi' .10000 .08079 .06778 .12348 .10000 .08402 .14640 .11883 .10000
zZfi" .10004 .08079 .06776 .12354 .10000 .08400 .14649 .11883 .09997
500 Zzii* .4192 .4192 4192 .5000 .5000 .5000 .5737 .5737 .5787
zfi' .5000 .4192 .3609 .5911 .5000 .4832 .6729 .5737 .5000
zfi" .5005 .4192 .3610 .5923 .5000 °.4331 .6749 .5737 .4996
1.00 zji* .873 .873 873 1.000 1.000 1.000 1.107 1.107 1.107
zfi' 1.000 .873 775 1.1832 1.000 .896 1.241 1.107 1.000
zfi" 1.001 .873 776 1.135 1.000 .897 1.248 1.107 .999
5.00 zfi* 4.958 4.958 4.958 5.000 5.000 5.000 5.028 5.028 5.028
zfi' 5.000 4.958 4.917 5.084 5.000 4.966 5.057 5.028 5.000
zfi" 5.000 4.958 4.928 5.041 5.000 4.971 5.069 5.028 5.000

It is better to adjust by weighting than by the iterative method

when w<w'<1, and the opposite is true when 1<w'<w. If, however,

and zy are small, the two methods give approximately the same

results. Then there is no need to use the more complicated iterative

method. If p or zu are large enough to give visible differences

between the two methods, we have found that the weighting method

(") seems to be less sensitive to erroneous estimates of w than the

iterative method (Figure 9).



True response probability, w True response probability, w

Figure 9. Expected values of the adjusted estimators {i' and {i" for
zp=2 and zp=5 and selected values of the guessed ratios

w'=rl/ro.

Unfortunately, both adjustment methods are sensitive to erroneous
estimates of w when w is not close to 1, i.e., when the nonresponse
bias is significant and there may be reasons to adjust for it. Thus,
we have verified the old truth that the only safe way to reduce

nonresponse bias is to reduce the nonresponse rate.



6.3 Other adjustment methods

For many reasons no global adjustment method was used in the 1981
Swedish Fertility Survey. The main reason was that the empirical
study (Lyberg, 1983) suggested that the nonresponse bias was small
compared with the random errors for the estimates of the main
survey variables (fertility and nuptiality). Thus, it would not be
wise to use an adjustment method that could increase the bias and
decrease the precision. The two methods investigated in the
previous section were found to be very sensitive to wrong guesses
of the relation between the response probabilities. These methods
could therefore not be recommended. No other adjustment method

useful in life-history analysis was found in the literature.

Most of the nonresponse models discussed in Section 2.1 aim at
adjusting for nonresponse. Survey statisticians often use weighting
to adjust for nonresponse bias (see, e.g., Thomsen (1973, 1978),
Lindstrom et al. (1979), Platek et al. (1978), Jagers (1986)). A
review is given by Kalton and Kasprzyk (1986). The concept of
response probabilities seems to have been commonly accepted. At
least if such probabilities are formulated as conditional on the
sample, as proposed by Sirndal and Swensson (1987). A
straightforward adjustment technique within the randomization
theory is then to modify the Horvitz—-Thompson estimator by
weigthing with the "total inclusion probability" defined as the
product of the sample inclusion probability and the response

probability.

With many auxiliary variables the response probabilities can be
estimated by logistic or probit regression and used directly for
weighting individual values (see, for instance, Ekholm and

Laaksonen (1990)). This method, however, can increase the variance



substantially if the predicted response probabilities vary greatly.
The two-phase sampling approach with conditional generalized
regression estimation, developed by Swensson and Sédrndal (1987), is

probably less sensitive.

The weighting adjustment methods found in the literature concern
population totals (or means). For central rates (and other ratio
estimators) the adjustment methods proposed can be applied to the
numerator and denominator separately. If the groups are defined by
the outcome of the life histories (i.e., the value of QJT‘), the
standard groupwise weighting method becomes equivalent to the
weighting method described in the previous section. (If the values
of Qj were known for the nonrespondents it would also be possible
to use an imputation technique for the missing exposures.
Imputation for nonresponse is, however, not permitted by the data
protection legislation in Sweden (Dalenius, 1979).) Auxiliary
variables, other than the outcomes, could also be used to estimate
response probabilities and weigh the occurrences and exposures

separately.

Adjusting by weighting requires auxiliary variables that are
correlated with the response mechanism (or rather reflect the
correlation between the response mechanism and the outcome
variables). For the 1981 Swedish Fertility Survey two different
population registers could provide such auxiliary information: the
Swedish Fertility Register (SFR) and the Total Population Register
(TPR).

The SFR contained demographic data on life histories but no
additional information that was expected to be associated with
response behavior, for instance education, income, place of
residence, etc.. The SFR information was therefore not expected to
yield accurate estimates of response probabilities. Furthermore, it

would not be easy to decide what life history data to account for



when estimating response probabilities or defining homogeneous
response groups (total fertility, fertility and timing of births, the

fertility and marital history, or what?).

The TPR, which constituted the sampling frame, contained
information about present address, marital status, children under 18
living with their mother, and income. That information could perhaps
be useful to adjust estimates of the current situation, for instance,
attitudes toward children. However, the central rates used in life
history analyses concern subgroups defined by previous status, for
instance background variables and duration in a state. The TPR-
information could not be used for estimating response probabilities

for such subgroups.

Weighting with response probabilities is a natural extension of the
randomization theory for estimating population quantities. Life
history analyses based on central rates rely on parametric outcome
models and likelihood inference, however. The treatment of
nonresponse in these analyses should therefore be derived within
the framework of likelihood inference. One way is to model the joint
distribution of the outcome variables (Qj and T) and some auxiliary
variable (x) so that the response mechanism can be ignored. This is
the case if the loglikelihood can be decomposed into loglikelihoods
(with distinct parameters) that correspond to likelihoods for

complete data problems. (Little and Rubin, 1987, chapter 6).

Another (likelihood-based) way is the "stochastic censoring
approach": The outcome variable (y) is observed if and only if the
value of an unknown variable (u) exceeds a threshold value and
both y and u are assumed to have a linear regression of covariates.
The parameters can be estimated by maximum likelihood or the two-
step method proposed by Heckman (1976, 1979) and used by Brehm
(1990). (See, Little and Rubin, 1987, chapter 6). A third way is a

Bayesian approach.



_52_

Of course, the best solution is to model the outcome variables so
that the response mechanism can be ignored. Then all methods
derived for the complete response situation can be applied, for
instance, statistical tests, intensity regression (used in many
analyses of the fertility survey), and so on. Likelihood methods for
treating nonignorable response mechanisms were considered too
complicated for the fertility survey as the survey was to be used

for many different analyses.

7 Concluding remarks

The simple nonresponse model proposed in this essay has been
useful for studying the effects of nonresponse on estimates of
transition intensities in a competing risks model. It has been shown
that central rates (occurrence exposure rates) based on the
respondents only behave in the same way as in the complete
response situation, provided that the response probabilities are
equal for decrements and survivors. Then the response mechanism is
ignorable: the central rates are asymptotically unbiased estimators
of the transition intensities, the standard variance estimator is
asymptotically unbiased, and the central rates for different causes

are asymptotically uncorrelated.

When the response probabilities differ between decrements from
different causes and survivors, the estimators are not unbiased and
uncorrelated. In most cases the technical bias (due to ratio
estimation), the bias of the variance estimator, and the correlation
between central rates for different causes can be ignored. The
nonresponse bias, however, may be very large. This bias can be
expressed as a function of the differences between the response
probabilities for decrements from different causes and the survivors

and the underlying transition intensities.
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Two adjustment methods were investigated, but no one was judged
useful. Both methods require accurate estimates of the ratios
between the response probabilities for decrements from different
causes and the response probability for survivors. If erroneous
estimates of these ratios are used the nonresponse bias may
increase. As long as no robust adjustment method for competing
risks models has been found the researcher is advised to use
relevant covariates in the outcome model so that the response

mechanism becomes ignorable.
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APPENDIX

Theorem 1. The moments of the observed variables and observed

central rates defined in Section 2 are as follows (for j=1,2,..., K):
E(Q}) = E((QJ‘-‘)Z) = ujqrj/u =4qj . (A1)
E(Q*) = E((Q*)?2) = ary =q*,

E(T*) = [qu- pzu(rQ—rol/u =t ,

E((T*)?) = [2rg(a-pzu) - p(zw)*(rg-rpl/u® ,
E(Q}T‘) = ujrj(q—pzu)/u2 ,

o ~ 0t - —(p —py DzR(ZR-q) .
E(uj) & uj{l + (q-pzp) rqll (rQ ro) q.(q_pzu)/n(ut ¥,

and

ro) pzp({zp-2q9+pzy) I/n

Cov(@il) = ninjldy/aj - (r- a(ut*)?

]

where dij = 1 if i=j and dij = 0 if i#j, and

R = Zuj, r, = Erjuj/u, (A.2)

and

1-q = exp(-zp).

he]
I

Furthermore, the covariance is estimated approximately unbiasedly

by

£ * 73 % —L x . {yxpx x . Nxmx x
cov(uiuj) = -1 Z, (in uiTv)(ij uij)/(EvT )2, (A.8)
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Proof. We use the following results concerning the model variables

(for j=1,2,..., K):

P(Q=1) = l-exp(-zu) = q,

P(Qj=1) = quj/u = q,

E(T'|Q=0) =2z,
and

E(T'[Q=1) = [qv! - V_zl Vi o Wy, for vz 1
The moments of T, conditional on Qj = 1, are derived by using

¢
P(TSt|Q=1) = ) n; exp(-sn) ds /q; = [1-exp(-tml/q

0

which yields

Z
ql f tvu exp(—-tp) dt
0

I

E(T'|Q=1)

v-1 A
- q-lu-v[ exp(—tp){v! + R (\7‘};—1—)7 (tw"™) ]0

The results in (A.1) which have to do with the observed variables
are then obtained by inserting the results of (A.4) in the following

expressions: if Y* = R.Y, then

E(Y*) z P(Qj=1)-P(R=1 |Qj=1)-E(Y|Qj=1)

+ P(Q=0)-P(R=1|Q=0)-E(Y|Q=0)

2 qr E(Y|Q=1) + pry E(Y|Q=0) .

To derive the moment of the observed central rates, we notice that
they can be expressed as ratios of means: ﬁ]? = é;/i’l where each
of QJ? =z ijv/n and T* = I T;/n is a mean of n stochastically
independent variables, identically distributed as QJf and T=,

respectively.
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Let ¥, @, X and V be the means of n stochastically independent
variables, identically distributed as Y, U, X and V with expected
values my, m, m
expansion (see e.g., Des Raj, 1968, Chapters 5.4-5.5), it can be

and m,, respectively. By means of a Taylor

shown that the expected value of the ratio y/X and the covariance

of the ratios §/X and U/V are approximately

E(§/X)

R

%};“ + [ E(X2) —%;E(XY)]/n(mx)ﬂ (A.5)
and

Cov(y/X,0/V)

b4

%y%u [RC(Y,U) + RC(X,V) - RC(Y,V) - RC(U,X)I/n

rhy
mm .C(Y,U C(X,V c(Y,V C(U,X

=Hy_n—1u‘1(n b fnm) - gnm) - (mm)]/n’
oy My Ly vy 10X

where RC(.,.) denotes the relative covariance. Furthermore, a

consistent estimator of the covariance above is given by
cov(y/X, /) = {& (Yv— va'/i)(Uv—VVﬁ/V)]/)?Vn(n—1).

If we let Y = QJ U = C.)1 and X = V = T* 'in the expressions above

we obtain, after some algebra, the results in (A.1). O

Theorem 2. Suppose that T = 1" is the unique solution to the

equation

. = _ bW iy =

T T/ 11 (D) 1(1-b)] 1/8(1),
where p(t) = 1 - g(1) = exp(~1) and b > 0. Furthermore, suppose
that the Newton—Raphson iteration process converges to t" and is
sufficiently close at the nth step. Then the following is true for
the nth value in that process:

p(rn)

T, <t if and only if (Tn/t‘) < s(rn) = 1- Wn(l—b). (A.6)
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Proof. Let f = f(1) = t/s(t) - y* ,

where
s(t) = 1 - (1-b)1p/q >0,
b = 1/w' >,
|Y = 1-q = exp(-1) (0<p,qs1).

The Newton—Raphson gives the following iteration formula to solve

the equation f(y) = O:

T= T, = f(rn)/f'(rn). (A.7)
From q'(t) = -p'(t) = -p(1) = -p(1r) and p+qg=1 it follows that:
f'(tr) = s'zls - 18'(1)]
= s'z{s + 1(1-b)q-2[q(-Tp+D)-1p%}}
= s-z{s - I(l—b)q-zp(r—q)l
= s'2[1 - (1—b)prq’2(q+T-q)]
= s - (1—b)p(t/q)2].

The last expression is always positive, since b>0 and p(t/q)2<1,
as shown by the following Taylor expansions:



1 - plt/q)? = (p/@lef(1 -2e

(p/@)2lel - 2 e

(D/@)2E,y (T/vDI2"-2] = £ (t"v1) + v+t
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-1 + e'ZT) - TzeT]

U~ ter +1]

(0/Q)2(z,, (T/vDI2"-2] - 1 (v +1]

3+1]

(p/qE,, (/vnl'-2] - 1 (vDv-1)(v-2)

+1+2VHAVY/2+8V/6 ~2-2V=2V2/2-2VS/6 + T2+T+1]

(p/@)2s,, (T/vDI2'-2 - vv-1)] > o,

since
v-2 v

2'e2-vy(v-1) = % (/) + 2(1+v(v-1)] - 2-v(v-1) > 0 for v24. O
i=2

This means that the correction factor in (A.7), ¢, = - f(rn)/f'(Tn), is

negative if f(Tn) > 0 and positive if f(Tn) < 0. As the process

converges then

"
Tl’l < Tn+1 < 1

ie.,

Tn < Tn+1 < T

if f(Tn) <0,
if f(Tn) >0,

if and only if (ff) t* > Tn/s(rn).

p,T

ift t/tr (1 ——2
n qn

(1-b). 0O (A7)
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Theorem 3. Let Tt=zu, 1*=zu, T'=zu, t"=zpr", and

™ =1 /[1 —%(w—l)]
i -— _M — '
1 =1 /[l qW(W w")]

and let t" be the unique solution to the equation:
x = _L’[’ ’-—
T T /Il qW(w 1)].

Then the following relations are true:

n < u" <! < p* if 1 < w' < w o,
n' < p" <n < p* if 1 < w < w',
u < p*r <pt <" it w <1 <w o,
pr < ap" < <n if w < w' <1
n* < u < qp' < p" if w' < W <1 ,
n' < up" < pur < qu if w <1 < w'

Proof. The relations between u, p* and p' are easily found by

some algebra:

1/t =1 - Ew-1n -~ T <1t iff 14w, (a)
qw
/10 =1 - Eig-w) - T T iff w<w , (b)
qw
p__vrv (w'=1)
o/ =1 + & - T iff W<l . (c)
pT 1
1I-=1- =)
q w

To compare n" with n, u* and p', respectively, we use the result in
Theorem 2. Assume that T,=T, rn=1:‘ and rn=t', respectively, are

sufficiently close to t1". Inserting these terms into:

p.T
"o x - nn [ -
rn<t iff rn/r <1 R (w'=1)
n
yields:
<" iff
— p_‘['_ - - E [ — " s t
T[1 qw(w D] < 11 o (w'-1)] T <1t iff wiiw (@)

T iff 1 <1 - fl’—SWL (w'-1) - T iff W'l (e)
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<t iff

:”: <1= &%;{; (w'-1) , ie., iff

% (W'-1) < T - i, de, iff

5%57 (w'—-1) < % - (;L‘TV(W-W') + %‘W‘”L ie., iff
‘(;L&:%‘;T (w'-1) < % - %},l(w—w') + ﬁ(w—l)], i.e., iff
P dw-n < Ew-b,

Inserting the approximation:

p(t')q
g{t')p

_ exp(-1)-1_ 1
exp(-1t)-1 T

Hw=-w") ¢

_pr, (w'-1
(1 q )

w

=].—pl

0

Combining the results (a)—-(f) yields:

(w-w')

iff

into (f.1) yields:

w'<w,1

or

whOw,l .

(f.1)

(f2)

if
L==== —= R
(a) T <T T < T I <1 T8 <1 T* < T T* <1
(b) T <t T' <1 I <71 T <1 T <t T <T
(c) T <1 T <1 T < T I <t - <t T <t
(d) T 1" " <1 T < 1" " LT T ¢T" " <1
(e) R R T < 1" T < T > < 1" "<t
() " < T T < 1" T < t1" " < T T < 1" T < T
(a)=(f) | t<e"<r'<r™ | o<t | o< | <r'dr | o< T'<T"<T*<T
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List of notations

Parameters:
uj( t)

p=1-q

Estimators:

g ol

=t}

i

H

transition intensity as defined in Section 1.

exp(-zu) = the survival probability for constant transition intensity
R and censoring time z.
quj/u = the transition probability for cause j.

the response probabilities among decrements from cause j (j=1,2, ...,
K) and survivors, respectively.

1 if transition due to cause §, Qj=0 otherwise.
1 if transition due to any cause, Q=0 otherwise.
1 if the individual responds, R=0 otherwise.

min(U,z), where U is the time of transition out of State 0, and z is
the censoring time.

RQ., RQ, RT, respectively, observed variables that are equal to 0 for
thé nonrespondents.

observed response rates.

number of respondents.

central rate (occurrence/exposure rate) based on the whole sample.
corresponding rate based on the respondents (2.1).

estimator adjusted by weighting (6.1).

estimator adjusted by the iterative method (6.5).

estimators of transition and survival probabilities based on estimated
transition intensities (5.6).

estimators of transition and survival probabilities based on observed
proportions (5.7).

number of respondents.

Expected values:

i

Erjuj/u = the overall expected response rate among all departures.

qu + pry = the overall expected response rate.

the overall expected response rate among decrements from any cause
other than j.

expected values of QJ?, @*, and T*, repectively (A.1).

YA R
QJ/
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